These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 7989600)
1. Glucose regulation of hydroperoxide metabolism in rat intestinal cells. Stimulation of reduced nicotinamide adenine dinucleotide phosphate supply. Aw TY; Rhoads CA J Clin Invest; 1994 Dec; 94(6):2426-34. PubMed ID: 7989600 [TBL] [Abstract][Full Text] [Related]
2. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes. Rush GF; Alberts D Toxicol Appl Pharmacol; 1986 Sep; 85(3):324-31. PubMed ID: 2945286 [TBL] [Abstract][Full Text] [Related]
3. Determinants of hydroperoxide detoxification in diabetic rat intestine: effect of insulin and fasting on the glutathione redox cycle. Iwakiri R; Rhoads CA; Aw TY Metabolism; 1995 Nov; 44(11):1462-8. PubMed ID: 7476335 [TBL] [Abstract][Full Text] [Related]
4. Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Winkler BS; DeSantis N; Solomon F Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464 [TBL] [Abstract][Full Text] [Related]
5. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Tribble DL; Jones DP Biochem Pharmacol; 1990 Feb; 39(4):729-36. PubMed ID: 2306281 [TBL] [Abstract][Full Text] [Related]
6. Effect of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose-phosphate shunt in perfused rat liver. Saha N; Stoll B; Lang F; Häussinger D Eur J Biochem; 1992 Oct; 209(1):437-44. PubMed ID: 1396717 [TBL] [Abstract][Full Text] [Related]
7. Reduction of glutathione disulfide and the maintenance of reducing equivalents in hypoxic hearts after the infusion of diamide. Lund LG; Paraidathathu T; Kehrer JP Toxicology; 1994 Nov; 93(2-3):249-62. PubMed ID: 7974518 [TBL] [Abstract][Full Text] [Related]
8. Chronic hypoxia, glutathione-dependent detoxication, and metabolic instability in rat small intestine. LeGrand TS; Aw TY Am J Physiol; 1997 Feb; 272(2 Pt 1):G328-34. PubMed ID: 9124357 [TBL] [Abstract][Full Text] [Related]
9. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages. Sutherland MW; Nelson J; Harrison G; Forman HJ Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274 [TBL] [Abstract][Full Text] [Related]
10. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria. Liu H; Kehrer JP Free Radic Biol Med; 1996; 20(3):433-42. PubMed ID: 8720915 [TBL] [Abstract][Full Text] [Related]
11. Chronic hypoxia alters glucose utilization during GSH-dependent detoxication in rat small intestine. LeGrand TS; Aw TY Am J Physiol; 1998 Feb; 274(2):G376-84. PubMed ID: 9486192 [TBL] [Abstract][Full Text] [Related]
12. Glutathione oxidation and activation of pentose phosphate cycle during hydroperoxide metabolism. A comparison of livers from fed and fasted rats. Brigelius R Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):989-96. PubMed ID: 6629334 [TBL] [Abstract][Full Text] [Related]
13. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro. Hiranruengchok R; Harris C Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290 [TBL] [Abstract][Full Text] [Related]
14. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood. Di Simplicio P; Lupis E; Rossi R Biochim Biophys Acta; 1996 Mar; 1289(2):252-60. PubMed ID: 8600982 [TBL] [Abstract][Full Text] [Related]
15. Glutathione redox cycle-driven recovery of reduced glutathione after oxidation by tertiary-butyl hydroperoxide in preimplantation mouse embryos. Gardiner CS; Reed DJ Arch Biochem Biophys; 1995 Aug; 321(1):6-12. PubMed ID: 7639536 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of the hexose monophosphate shunt in bovine ciliary body under oxidative stress. Shichi H; Hodder WA; Giblin FJ J Ocul Pharmacol; 1986; 2(1):59-66. PubMed ID: 3503098 [TBL] [Abstract][Full Text] [Related]
17. Mechanism for the changes in levels of glutathione upon exposure of cultured mammalian cells to tertiary-butylhydroperoxide and diamide. Ochi T Arch Toxicol; 1993; 67(6):401-10. PubMed ID: 8215909 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia increases glutathione redox cycle and protects rat lungs against oxidants. White CW; Jackson JH; McMurtry IF; Repine JE J Appl Physiol (1985); 1988 Dec; 65(6):2607-16. PubMed ID: 3215862 [TBL] [Abstract][Full Text] [Related]
19. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment. Brodie AE; Reed DJ Chem Biol Interact; 1992 Sep; 84(2):125-32. PubMed ID: 1394620 [TBL] [Abstract][Full Text] [Related]
20. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway. Faut M; Paiz A; San MartÃn de Viale LC; Mazzetti MB Exp Biol Med (Maywood); 2013 Feb; 238(2):133-43. PubMed ID: 23390166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]