These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 7990131)
1. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. Wu Y; Glimcher MJ; Rey C; Ackerman JL J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131 [TBL] [Abstract][Full Text] [Related]
2. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards. Kaflak A; Kolodziejski W Magn Reson Chem; 2008 Apr; 46(4):335-41. PubMed ID: 18306247 [TBL] [Abstract][Full Text] [Related]
4. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral. Kaflak-Hachulska A; Samoson A; Kolodziejski W Calcif Tissue Int; 2003 Nov; 73(5):476-86. PubMed ID: 12958695 [TBL] [Abstract][Full Text] [Related]
5. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182 [TBL] [Abstract][Full Text] [Related]
6. Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral. Aue WP; Roufosse AH; Glimcher MJ; Griffin RG Biochemistry; 1984 Dec; 23(25):6110-4. PubMed ID: 6525349 [TBL] [Abstract][Full Text] [Related]
7. Phosphorus-31 solid-state nmr in high-field gradients: prospects for imaging bone using the long echo-train summation technique (LETS). Gillies DG; Newling B; Randall EW J Magn Reson; 2001 Aug; 151(2):235-41. PubMed ID: 11531345 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. Wu Y; Ackerman JL; Kim HM; Rey C; Barroug A; Glimcher MJ J Bone Miner Res; 2002 Mar; 17(3):472-80. PubMed ID: 11874238 [TBL] [Abstract][Full Text] [Related]
9. Structural studies of the mineral phase of calcifying cartilage. Rey C; Beshah K; Griffin R; Glimcher MJ J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Roufosse AH; Aue WP; Roberts JE; Glimcher MJ; Griffin RG Biochemistry; 1984 Dec; 23(25):6115-20. PubMed ID: 6525350 [TBL] [Abstract][Full Text] [Related]
11. Solid state phosphorus-31 magnetic resonance imaging of bone mineral. Moore JR; Garrido L; Ackerman JL Magn Reson Med; 1995 Mar; 33(3):293-9. PubMed ID: 7760697 [TBL] [Abstract][Full Text] [Related]
12. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study. Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806 [TBL] [Abstract][Full Text] [Related]
13. Colloidal calcium phosphates in casein micelles studied by slow-speed-spinning 31P magic angle spinning solid-state nuclear magnetic resonance. Bak M; Rasmussen LK; Petersen TE; Nielsen NC J Dairy Sci; 2001 Jun; 84(6):1310-9. PubMed ID: 11417687 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bohic S; Rey C; Legrand A; Sfihi H; Rohanizadeh R; Martel C; Barbier A; Daculsi G Bone; 2000 Apr; 26(4):341-8. PubMed ID: 10719276 [TBL] [Abstract][Full Text] [Related]
15. Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures. Kuhn LT; Wu Y; Rey C; Gerstenfeld LC; Grynpas MD; Ackerman JL; Kim HM; Glimcher MJ J Bone Miner Res; 2000 Jul; 15(7):1301-9. PubMed ID: 10893678 [TBL] [Abstract][Full Text] [Related]
17. ADRF differential cross polarization spectroscopy of synthetic calcium phosphates and bone mineral. Ramanathan C; Ackerman JL J Magn Reson; 1997 Jul; 127(1):26-35. PubMed ID: 9245627 [TBL] [Abstract][Full Text] [Related]
18. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Cho G; Wu Y; Ackerman JL Science; 2003 May; 300(5622):1123-7. PubMed ID: 12750514 [TBL] [Abstract][Full Text] [Related]
19. Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction. Roberts JE; Bonar LC; Griffin RG; Glimcher MJ Calcif Tissue Int; 1992 Jan; 50(1):42-8. PubMed ID: 1739869 [TBL] [Abstract][Full Text] [Related]
20. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Laurencin D; Wong A; Chrzanowski W; Knowles JC; Qiu D; Pickup DM; Newport RJ; Gan Z; Duer MJ; Smith ME Phys Chem Chem Phys; 2010 Feb; 12(5):1081-91. PubMed ID: 20094673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]