These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 7990142)
1. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase. Zhang Y; Liang JY; Huang S; Lipscomb WN J Mol Biol; 1994 Dec; 244(5):609-24. PubMed ID: 7990142 [TBL] [Abstract][Full Text] [Related]
2. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity. Lu G; Stec B; Giroux EL; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152 [TBL] [Abstract][Full Text] [Related]
3. Allosteric transition of fructose-1,6-bisphosphatase. Liang JY; Zhang Y; Huang S; Lipscomb WN Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2132-6. PubMed ID: 8384713 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli. Stec B; Abraham R; Giroux E; Kantrowitz ER Protein Sci; 1996 Aug; 5(8):1541-53. PubMed ID: 8844845 [TBL] [Abstract][Full Text] [Related]
5. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities. Shyur LF; Aleshin AE; Fromm HJ Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527 [TBL] [Abstract][Full Text] [Related]
7. Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 A resolution. Weeks CM; Roszak AW; Erman M; Kaiser R; Jörnvall H; Ghosh D Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):93-102. PubMed ID: 10089399 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the neutral form of fructose 1,6-bisphosphatase complexed with regulatory inhibitor fructose 2,6-bisphosphate at 2.6-A resolution. Liang JY; Huang S; Zhang Y; Ke H; Lipscomb WN Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2404-8. PubMed ID: 1312721 [TBL] [Abstract][Full Text] [Related]
9. Conformational transition of fructose-1,6-bisphosphatase: structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form). Ke HM; Liang JY; Zhang YP; Lipscomb WN Biochemistry; 1991 May; 30(18):4412-20. PubMed ID: 1850623 [TBL] [Abstract][Full Text] [Related]
10. Importance of the dimer-dimer interface for allosteric signal transduction and AMP cooperativity of pig kidney fructose-1,6-bisphosphatase. Site-specific mutagenesis studies of Glu-192 and Asp-187 residues on the 190's loop. Lu G; Giroux EL; Kantrowitz ER J Biol Chem; 1997 Feb; 272(8):5076-81. PubMed ID: 9030572 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors. Xue Y; Huang S; Liang JY; Zhang Y; Lipscomb WN Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12482-6. PubMed ID: 7809062 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium. Ke HM; Zhang YP; Lipscomb WN Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5243-7. PubMed ID: 2164670 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the allosteric binding pocket of human liver fructose-1,6-bisphosphatase by protein crystallography and inhibitor activity studies. Iversen LF; Brzozowski M; Hastrup S; Hubbard R; Kastrup JS; Larsen IK; Naerum L; Nørskov-Lauridsen L; Rasmussen PB; Thim L; Wiberg FC; Lundgren K Protein Sci; 1997 May; 6(5):971-82. PubMed ID: 9144768 [TBL] [Abstract][Full Text] [Related]
15. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state. Lu G; Williams MK; Giroux EL; Kantrowitz ER Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911 [TBL] [Abstract][Full Text] [Related]
16. Structural aspects of the allosteric inhibition of fructose-1,6-bisphosphatase by AMP: the binding of both the substrate analogue 2,5-anhydro-D-glucitol 1,6-bisphosphate and catalytic metal ions monitored by X-ray crystallography. Villeret V; Huang S; Zhang Y; Lipscomb WN Biochemistry; 1995 Apr; 34(13):4307-15. PubMed ID: 7703244 [TBL] [Abstract][Full Text] [Related]
17. Unraveling multistate unfolding of pig kidney fructose-1,6-bisphosphatase using single tryptophan mutants. Ludwig HC; Pardo FN; Asenjo JL; Maureira MA; Yañez AJ; Slebe JC FEBS J; 2007 Oct; 274(20):5337-49. PubMed ID: 17894826 [TBL] [Abstract][Full Text] [Related]
18. Glutamic acid residue 98 is critical for catalysis in pig kidney fructose-1,6-bisphosphatase. Kelley N; Giroux EL; Lu G; Kantrowitz ER Biochem Biophys Res Commun; 1996 Feb; 219(3):848-52. PubMed ID: 8645268 [TBL] [Abstract][Full Text] [Related]
19. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition. Cárcamo JG; Yañez AJ; Ludwig HC; León O; Pinto RO; Reyes AM; Slebe JC Eur J Biochem; 2000 Apr; 267(8):2242-51. PubMed ID: 10759847 [TBL] [Abstract][Full Text] [Related]
20. Structures of mammalian and bacterial fructose-1,6-bisphosphatase reveal the basis for synergism in AMP/fructose 2,6-bisphosphate inhibition. Hines JK; Chen X; Nix JC; Fromm HJ; Honzatko RB J Biol Chem; 2007 Dec; 282(49):36121-31. PubMed ID: 17933867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]