These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7990507)

  • 1. Simultaneous multisite recordings and stimulation of single isolated leech neurons using planar extracellular electrode arrays.
    Wilson RJ; Breckenridge L; Blackshaw SE; Connolly P; Dow JA; Curtis AS; Wilkinson CD
    J Neurosci Methods; 1994 Jul; 53(1):101-10. PubMed ID: 7990507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell.
    Zecević D; Antić S
    Histochem J; 1998 Mar; 30(3):197-216. PubMed ID: 10188927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisite recording of extracellular potentials produced by microchannel-confined neurons in-vitro.
    Claverol-Tinturé E; Cabestany J; Rosell X
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):331-5. PubMed ID: 17278590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-Dependent neuritic spikes initiate Ca2+-dependent somatic plateau action potentials in insect dorsal paired median neurons.
    Amat C; Lapied B; French AS; Hue B
    J Neurophysiol; 1998 Nov; 80(5):2718-26. PubMed ID: 9819276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration.
    Villière V; McLachlan EM
    J Neurophysiol; 1996 Sep; 76(3):1924-41. PubMed ID: 8890304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.
    Nelson MJ; Valtcheva S; Venance L
    J Neurophysiol; 2017 Jul; 118(1):574-594. PubMed ID: 28424297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech.
    Angstadt JD; Choo JJ
    J Neurophysiol; 1996 Sep; 76(3):1491-502. PubMed ID: 8890269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential propagation recorded from single axonal arbors using multielectrode arrays.
    Tovar KR; Bridges DC; Wu B; Randall C; Audouard M; Jang J; Hansma PK; Kosik KS
    J Neurophysiol; 2018 Jul; 120(1):306-320. PubMed ID: 29641308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outward currents in heart motor neurons of the medicinal leech.
    Opdyke CA; Calabrese RL
    J Neurophysiol; 1995 Dec; 74(6):2524-37. PubMed ID: 8747211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent clamp of intracellular pH of identified leech glial cells.
    Deitmer JW; Schneider HP
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):157-66. PubMed ID: 7658370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recordings of cultured neurons and synaptic activity using patch-clamp chips.
    Martina M; Luk C; Py C; Martinez D; Comas T; Monette R; Denhoff M; Syed N; Mealing GA
    J Neural Eng; 2011 Jun; 8(3):034002. PubMed ID: 21540486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of voltage transients in arborized neurites of Retzius cells of the leech in culture.
    Fromherz P; Vetter T
    Z Naturforsch C J Biosci; 1991; 46(7-8):687-96. PubMed ID: 1776999
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.