These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 7990826)
21. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding. Marie-Claire C; Ruffet E; Antonczak S; Beaumont A; O'Donohue M; Roques BP; Fournié-Zaluski MC Biochemistry; 1997 Nov; 36(45):13938-45. PubMed ID: 9374873 [TBL] [Abstract][Full Text] [Related]
22. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism. Mock WL; Stanford DJ Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513 [TBL] [Abstract][Full Text] [Related]
23. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
24. The Na+ binding channel of human coagulation proteases: novel insights on the structure and allosteric modulation revealed by molecular surface analysis. Silva FP; Antunes OA; de Alencastro RB; De Simone SG Biophys Chem; 2006 Feb; 119(3):282-94. PubMed ID: 16288954 [TBL] [Abstract][Full Text] [Related]
25. Theoretical prediction on functional domains from the primary structure of enterotoxin B and correlation with experimental data. Tarasov VI; Alakhov VYu Biochem Int; 1991 Dec; 25(5):941-9. PubMed ID: 1804112 [TBL] [Abstract][Full Text] [Related]
26. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR; Kondrashov F; Bryant S Protein Sci; 2004 Apr; 13(4):884-92. PubMed ID: 15010543 [TBL] [Abstract][Full Text] [Related]
27. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity. Tatsumi C; Hashida Y; Yasukawa K; Inouye K J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799 [TBL] [Abstract][Full Text] [Related]
28. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets. La D; Livesay DR BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082 [TBL] [Abstract][Full Text] [Related]
29. The design of metal-binding sites in proteins. Regan L Annu Rev Biophys Biomol Struct; 1993; 22():257-87. PubMed ID: 8347991 [No Abstract] [Full Text] [Related]
30. NMR solution structure of the 205-316 C-terminal fragment of thermolysin. An example of dimerization coupled to partial unfolding. Conejero-Lara F; González C; Jiménez MA; Padmanabhan S; Mateo PL; Rico M Biochemistry; 1997 Sep; 36(39):11975-83. PubMed ID: 9305992 [TBL] [Abstract][Full Text] [Related]
31. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. Axarli I; Dhavala P; Papageorgiou AC; Labrou NE J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949 [TBL] [Abstract][Full Text] [Related]
32. Analysis of protein structures reveals regions of rare backbone conformation at functional sites. Petock JM; Torshin IY; Weber IT; Harrison RW Proteins; 2003 Dec; 53(4):872-9. PubMed ID: 14635129 [TBL] [Abstract][Full Text] [Related]
33. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY; Liu JH; Fang YW; Hung HC Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308 [TBL] [Abstract][Full Text] [Related]
34. A fast method to predict protein interaction sites from sequences. Gallet X; Charloteaux B; Thomas A; Brasseur R J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732 [TBL] [Abstract][Full Text] [Related]
35. Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. English AC; Done SH; Caves LS; Groom CR; Hubbard RE Proteins; 1999 Dec; 37(4):628-40. PubMed ID: 10651278 [TBL] [Abstract][Full Text] [Related]
36. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study. da Graça Thrige D; Buur JR; Jørgensen FS Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125 [TBL] [Abstract][Full Text] [Related]
37. Zinc binding in peptide models of angiotensin-I converting enzyme active sites studied through 1H-NMR and chemical shift perturbation mapping. Galanis AS; Spyroulias GA; Pierattelli R; Tzakos A; Troganis A; Gerothanassis IP; Pairas G; Manessi-Zoupa E; Cordopatis P Biopolymers; 2003 Jun; 69(2):244-52. PubMed ID: 12767125 [TBL] [Abstract][Full Text] [Related]
38. Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods. Adekoya OA; Willassen NP; Sylte I J Struct Biol; 2006 Feb; 153(2):129-44. PubMed ID: 16376106 [TBL] [Abstract][Full Text] [Related]
39. Detection of functionally important regions in "hypothetical proteins" of known structure. Nimrod G; Schushan M; Steinberg DM; Ben-Tal N Structure; 2008 Dec; 16(12):1755-63. PubMed ID: 19081051 [TBL] [Abstract][Full Text] [Related]
40. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments. Saini HK; Fischer D Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]