BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7990966)

  • 1. Structure of the human ADP-ribosylation factor 1 complexed with GDP.
    Amor JC; Harrison DH; Kahn RA; Ringe D
    Nature; 1994 Dec; 372(6507):704-8. PubMed ID: 7990966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of an ADP-ribosylation factor, ARF1, from Entamoeba histolytica bound to Mg(2+)-GDP.
    Serbzhinskiy DA; Clifton MC; Sankaran B; Staker BL; Edwards TE; Myler PJ
    Acta Crystallogr F Struct Biol Commun; 2015 May; 71(Pt 5):594-9. PubMed ID: 25945714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and membrane interaction of myristoylated ARF1.
    Liu Y; Kahn RA; Prestegard JH
    Structure; 2009 Jan; 17(1):79-87. PubMed ID: 19141284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression, purification and preliminary X-ray crystallographic analysis of Arf1-GDP in complex with dimeric p23 peptide.
    Zheng P; Gao F; Deng K; Gong W; Sun Z
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Oct; 69(Pt 10):1155-8. PubMed ID: 24100571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of GDP release and gating in G protein coupled Fe2+ transport.
    Guilfoyle A; Maher MJ; Rapp M; Clarke R; Harrop S; Jormakka M
    EMBO J; 2009 Sep; 28(17):2677-85. PubMed ID: 19629046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point mutations in Arf1 reveal cooperative effects of the N-terminal extension and myristate for GTPase-activating protein catalytic activity.
    Rosenberg EM; Jian X; Soubias O; Jackson RA; Gladu E; Andersen E; Esser L; Sodt AJ; Xia D; Byrd RA; Randazzo PA
    PLoS One; 2024; 19(4):e0295103. PubMed ID: 38574162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the mechanism of fast-cycling cancer-associated mutations of Rac1 small Rho GTPase.
    Parise A; Magistrato A
    Protein Sci; 2024 Apr; 33(4):e4939. PubMed ID: 38501467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apolipoproteins L1 and L3 control mitochondrial membrane dynamics.
    Lecordier L; Heo P; Graversen JH; Hennig D; Skytthe MK; Cornet d'Elzius A; Pincet F; Pérez-Morga D; Pays E
    Cell Rep; 2023 Dec; 42(12):113528. PubMed ID: 38041817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arf family GTPases: Regulation of vesicle biogenesis and beyond.
    Li FL; Guan KL
    Bioessays; 2023 Jun; 45(6):e2200214. PubMed ID: 36998106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between TULP3 tubby domain and ARL13B amphipathic helix promote lipidated protein transport to cilia.
    Palicharla VR; Hwang SH; Somatilaka BN; Legué E; Shimada IS; Familiari NE; Tran VM; Woodruff JB; Liem KF; Mukhopadhyay S
    Mol Biol Cell; 2023 Mar; 34(3):ar18. PubMed ID: 36652335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L.
    Chen S; Zhang Z; Zhang Y; Choi T; Zhao Y
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish.
    Fasano G; Muto V; Radio FC; Venditti M; Mosaddeghzadeh N; Coppola S; Paradisi G; Zara E; Bazgir F; Ziegler A; Chillemi G; Bertuccini L; Tinari A; Vetro A; Pantaleoni F; Pizzi S; Conti LA; Petrini S; Bruselles A; Prandi IG; Mancini C; Chandramouli B; Barth M; Bris C; Milani D; Selicorni A; Macchiaiolo M; Gonfiantini MV; Bartuli A; Mariani R; Curry CJ; Guerrini R; Slavotinek A; Iascone M; Dallapiccola B; Ahmadian MR; Lauri A; Tartaglia M
    Nat Commun; 2022 Nov; 13(1):6841. PubMed ID: 36369169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARL3 mediates BBSome ciliary turnover by promoting its outward movement across the transition zone.
    Liu YX; Sun WY; Xue B; Zhang RK; Li WJ; Xie X; Fan ZC
    J Cell Biol; 2022 Oct; 221(10):. PubMed ID: 36129685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for activation of Arf1 at the Golgi complex.
    Muccini AJ; Gustafson MA; Fromme JC
    Cell Rep; 2022 Aug; 40(9):111282. PubMed ID: 36044848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Viruses Hijack and Modify the Secretory Transport Pathway.
    Hassan Z; Kumar ND; Reggiori F; Khan G
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bardet-Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome.
    Liu YX; Xue B; Sun WY; Wingfield JL; Sun J; Wu M; Lechtreck KF; Wu Z; Fan ZC
    Elife; 2021 Feb; 10():. PubMed ID: 33587040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations.
    Yang F; Li T; Peng Z; Liu Y; Guo Y
    J Biol Chem; 2020 Dec; 295(49):16643-16654. PubMed ID: 32972971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Kingdom Activation of
    Herrera A; Satchell KJF
    J Bacteriol; 2020 Nov; 202(24):. PubMed ID: 32900828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian- Symbiodiniaceae Mutualism.
    Medrano E; Merselis DG; Bellantuono AJ; Rodriguez-Lanetty M
    Front Microbiol; 2019; 10():1153. PubMed ID: 31214134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARF GTPases and their GEFs and GAPs: concepts and challenges.
    Sztul E; Chen PW; Casanova JE; Cherfils J; Dacks JB; Lambright DG; Lee FS; Randazzo PA; Santy LC; Schürmann A; Wilhelmi I; Yohe ME; Kahn RA
    Mol Biol Cell; 2019 May; 30(11):1249-1271. PubMed ID: 31084567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.