These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7991621)

  • 1. Bootstrap hypothesis tests for evolutionary trees and other dendrograms.
    Brown JK
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12293-7. PubMed ID: 7991621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences.
    Manske CL; Chapman DJ
    J Mol Evol; 1987; 26(3):226-51. PubMed ID: 3129569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interior-branch and bootstrap tests of phylogenetic trees.
    Sitnikova T; Rzhetsky A; Nei M
    Mol Biol Evol; 1995 Mar; 12(2):319-33. PubMed ID: 7700156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support.
    Müller KF
    BMC Evol Biol; 2005 Oct; 5():58. PubMed ID: 16255783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Majority-rule reduced consensus trees and their use in bootstrapping.
    Wilkinson M
    Mol Biol Evol; 1996 Mar; 13(3):437-44. PubMed ID: 8742632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences.
    Xie H; Bain O; Williams SA
    Parasite; 1994 Jun; 1(2):141-51. PubMed ID: 9140481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrelationships among major protistan groups based on a parsimony network of 5S rRNA sequences.
    Krishnan S; Barnabas S; Barnabas J
    Biosystems; 1990; 24(2):135-44. PubMed ID: 2249007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing hybridization hypotheses based on incongruent gene trees.
    Sang T; Zhong Y
    Syst Biol; 2000 Sep; 49(3):422-34. PubMed ID: 12116420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics.
    Suzuki Y; Glazko GV; Nei M
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16138-43. PubMed ID: 12451182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the distribution of bootstrap tree lengths using the maximum parsimony method.
    Bhattacharya D
    Mol Phylogenet Evol; 1996 Dec; 6(3):339-50. PubMed ID: 8975690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).
    Maddison DR
    Mol Phylogenet Evol; 2012 Jun; 63(3):533-76. PubMed ID: 22421212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using RAxML to Infer Phylogenies.
    Stamatakis A
    Curr Protoc Bioinformatics; 2015 Sep; 51():6.14.1-6.14.14. PubMed ID: 26334924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock.
    Zharkikh A; Li WH
    Mol Biol Evol; 1992 Nov; 9(6):1119-47. PubMed ID: 1435238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2002 Jan; 19(1):24-38. PubMed ID: 11752187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Asymptotic Behavior of Bootstrap Support Values in Molecular Phylogenetics.
    Huang J; Liu Y; Zhu T; Yang Z
    Syst Biol; 2021 Jun; 70(4):774-785. PubMed ID: 33377913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences.
    Turbeville JM; Pfeifer DM; Field KG; Raff RA
    Mol Biol Evol; 1991 Sep; 8(5):669-86. PubMed ID: 1766363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random sampling of constrained phylogenies: conducting phylogenetic analyses when the phylogeny is partially known.
    Housworth EA; Martins EP
    Syst Biol; 2001; 50(5):628-39. PubMed ID: 12116935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of green plant rbcL sequences.
    Manhart JR
    Mol Phylogenet Evol; 1994 Jun; 3(2):114-27. PubMed ID: 8075831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supertree bootstrapping methods for assessing phylogenetic variation among genes in genome-scale data sets.
    Burleigh JG; Driskell AC; Sanderson MJ
    Syst Biol; 2006 Jun; 55(3):426-40. PubMed ID: 16861207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When being "most likely" is not enough: examining the performance of three uses of the parametric bootstrap in phylogenetics.
    Antezana M
    J Mol Evol; 2003 Feb; 56(2):198-222. PubMed ID: 12574867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.