These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7992033)

  • 1. Identification of metabolic intermediates in microbial degradation of phenol using laser desorption time-of-flight mass spectrometry.
    Xu N; Majidi V
    Sci Total Environ; 1994 Nov; 156(2):139-43. PubMed ID: 7992033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol.
    Collins LD; Daugulis AJ
    Appl Microbiol Biotechnol; 1997 Jul; 48(1):18-22. PubMed ID: 9274043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor.
    Selvaratnam S; Schoedel BA; McFarland BL; Kulpa CF
    Appl Environ Microbiol; 1995 Nov; 61(11):3981-5. PubMed ID: 8526513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of putative biomarkers for toluene-degrading Burkholderia and pseudomonas by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and peptide mass fingerprinting.
    Hartmann EM; Colquhoun DR; Halden RU
    Biosci Biotechnol Biochem; 2010; 74(7):1470-2. PubMed ID: 20622441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida.
    Banerjee I; Modak JM; Bandopadhyay K; Das D; Maiti BR
    J Biotechnol; 2001 May; 87(3):211-23. PubMed ID: 11334665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
    Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K
    Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1.
    Shen H; Wang YT
    Appl Environ Microbiol; 1995 Jul; 61(7):2754-8. PubMed ID: 7618887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis.
    Babatabar S; Zamir SM; Shojaosadati SA; Yakhchali B; Zarch AB
    J Biosci Bioeng; 2019 Jun; 127(6):732-737. PubMed ID: 30598401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking of phenol degrading genotype.
    Kapley A; Purohit HJ
    Environ Sci Pollut Res Int; 2001; 8(2):89-90. PubMed ID: 11400643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1.
    Li Y; Li J; Wang C; Wang P
    Bioresour Technol; 2010 Sep; 101(17):6740-4. PubMed ID: 20385485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida.
    González BG; Herrera TG
    Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis.
    Ray S; Banerjee A
    J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365.
    Tsai SY; Juang RS
    J Hazard Mater; 2006 Nov; 138(1):125-32. PubMed ID: 16806688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors.
    Juang RS; Wu CY
    Chemosphere; 2007 Jan; 66(1):191-8. PubMed ID: 16765415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of analytical performances of a micro-array quadrupole instrument and a conventional quadrupole mass spectrometer equipped with membrane inlets.
    Ketola RA; Kiuru JT; Tarkiainen V; Kotiaho T; Sysoev AA
    Rapid Commun Mass Spectrom; 2003; 17(7):753-6. PubMed ID: 12661031
    [No Abstract]   [Full Text] [Related]  

  • 19. Biodegradation of 2,4,6-tribromophenol by Ochrobactrum sp. strain TB01.
    Yamada T; Takahama Y; Yamada Y
    Biosci Biotechnol Biochem; 2008 May; 72(5):1264-71. PubMed ID: 18460800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation of microorganisms capable of phenol degradation.
    Przybulewska K; Wieczorek A; Nowak A; Pochrzaszcz M
    Pol J Microbiol; 2006; 55(1):63-7. PubMed ID: 16878606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.