These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 799257)
1. Use of the method of mixed substrates to study the specificity of tRNA methylases. Gambaryan AS; Venkstern TV; Baev AA Mol Biol (Mosk); 1976; 10(4):697-705. PubMed ID: 799257 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism of tRNA methylase-tRNA recognition. Gambaryan AS; Venkstern TV; Bayev AA Nucleic Acids Res; 1976 Aug; 3(8):2079-87. PubMed ID: 967690 [TBL] [Abstract][Full Text] [Related]
3. Interaction of tRNA with tRNA (guanosine-1)methyltransferase: binding specificity determinants involve the dinucleotide G36pG37 and tertiary structure. Redlak M; Andraos-Selim C; Giege R; Florentz C; Holmes WM Biochemistry; 1997 Jul; 36(29):8699-709. PubMed ID: 9220956 [TBL] [Abstract][Full Text] [Related]
4. [Estimation of kinetic constants and study of site specificity of Zajdela ascite hepatoma and rat liver tRNA-methylases]. Tarasiavichene LE; Venkstern TV; Kanopkaĭte SI; Martsishauskas RP Biokhimiia; 1976 Aug; 41(8):1488-96. PubMed ID: 192339 [TBL] [Abstract][Full Text] [Related]
5. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
6. Recognition of the T-arm of tRNA by tRNA (m5U54)-methyltransferase is not sequence specific. Gu X; Ivanetich KM; Santi DV Biochemistry; 1996 Sep; 35(36):11652-9. PubMed ID: 8794745 [TBL] [Abstract][Full Text] [Related]
7. Pseudouridine synthetase Pus1 of Saccharomyces cerevisiae: kinetic characterisation, tRNA structural requirement and real-time analysis of its complex with tRNA. Arluison V; Buckle M; Grosjean H J Mol Biol; 1999 Jun; 289(3):491-502. PubMed ID: 10356324 [TBL] [Abstract][Full Text] [Related]
8. The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site. Rinke-Appel J; Jünke N; Osswald M; Brimacombe R RNA; 1995 Dec; 1(10):1018-28. PubMed ID: 8595557 [TBL] [Abstract][Full Text] [Related]
9. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants. Hardt WD; Schlegl J; Erdmann VA; Hartmann RK J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857 [TBL] [Abstract][Full Text] [Related]
11. [Effect of the structure of oligonucleotide substrates on interaction with methylase Eco dam]. Malygin EG; Zinov'ev VV; Gorbunov IuA; Popov SG; Rechkunova NI Biokhimiia; 1988 Oct; 53(10):1639-47. PubMed ID: 3233224 [TBL] [Abstract][Full Text] [Related]
12. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm. Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410 [TBL] [Abstract][Full Text] [Related]
13. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases. Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806 [TBL] [Abstract][Full Text] [Related]
15. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
16. Localization of the binding site for the 3'-terminal sequence of tRNAPhe in subunits of phenylalanyl-tRNA synthetase from Thermus thermophilus. Moor NA; Ankilova VN; Favre A; Lavrik OI Biochemistry (Mosc); 1998 Sep; 63(9):1051-6. PubMed ID: 9795274 [TBL] [Abstract][Full Text] [Related]
17. Essentially minimal sequence for substrate recognition by tRNA (guanosine-2')-methyltransferase from Thermus thermophilus HB27. Hori H; Yamazaki N; Matsumoto T; Ueda T; Nishikawa K; Kumagai I; Watanabe K Nucleic Acids Symp Ser; 1997; (37):189-90. PubMed ID: 9586063 [TBL] [Abstract][Full Text] [Related]
18. Cytidines in tRNAs that are required intact by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. Hegg LA; Thurlow DL Nucleic Acids Res; 1990 Oct; 18(20):5975-9. PubMed ID: 1700367 [TBL] [Abstract][Full Text] [Related]
19. Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site. Aphasizhev R; Senger B; Rengers JU; Sprinzl M; Walter P; Nussbaum G; Fasiolo F Biochemistry; 1996 Jan; 35(1):117-23. PubMed ID: 8555164 [TBL] [Abstract][Full Text] [Related]
20. Interaction of T. thermophilus phenylalanyl-tRNA synthetase with the 3'-terminal nucleotide of tRNAPhe. Vasil'eva IA; Ankilova VN; Lavrik OI; Moor NA Biochemistry (Mosc); 2000 Oct; 65(10):1157-66. PubMed ID: 11092959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]