BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 7992917)

  • 21. Differences in respiratory neural activities between vagal (superior laryngeal), hypoglossal, and phrenic nerves in the anesthetized rat.
    Fukuda Y; Honda Y
    Jpn J Physiol; 1982; 32(3):387-98. PubMed ID: 6813545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of a latent respiratory motor pathway by stimulation of neurons in the medullary chemoreceptor area of the rat.
    Zhou SY; Castro-Moure F; Goshgarian HG
    Exp Neurol; 2001 Sep; 171(1):176-84. PubMed ID: 11520132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bötzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat.
    Tian GF; Peever JH; Duffin J
    Exp Brain Res; 1999 Jan; 124(2):173-80. PubMed ID: 9928840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.
    Lee KZ
    J Physiol; 2016 Oct; 594(20):6009-6024. PubMed ID: 27106483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discharge patterns of bulbar respiratory neurons during retching and vomiting in decerebrate dogs.
    Koga T
    Jpn J Physiol; 1991; 41(2):233-49. PubMed ID: 1942663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons.
    Liu G; Feldman JL; Smith JC
    J Neurophysiol; 1990 Aug; 64(2):423-36. PubMed ID: 1976765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sevoflurane on respiratory activities in the phrenic nerve of decerebrate cats.
    Masuda A; Haji A; Kiriyama M; Ito Y; Takeda R
    Acta Anaesthesiol Scand; 1995 Aug; 39(6):774-81. PubMed ID: 7484033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs.
    Dogas Z; Stuth EA; Hopp FA; McCrimmon DR; Zuperku EJ
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):639-51. PubMed ID: 8544127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of halothane on excitatory neurotransmission to medullary expiratory neurons in a decerebrate dog model.
    Stuth EA; Krolo M; Stucke AG; Tonkovic-Capin M; Tonkovic-Capin V; Hopp FA; Kampine JP; Zuperku EJ
    Anesthesiology; 2000 Dec; 93(6):1474-81. PubMed ID: 11149443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of halothane on synaptic neurotransmission to medullary expiratory neurons in the ventral respiratory group of dogs.
    Stuth EA; Krolo M; Tonkovic-Capin M; Hopp FA; Kampine JP; Zuperku EJ
    Anesthesiology; 1999 Sep; 91(3):804-14. PubMed ID: 10485792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of the rhythmic activity of the medullary inspiratory neurons and phrenic nerve by fentanyl and reversal with nalbuphine.
    Tabatabai M; Kitahata LM; Collins JG
    Anesthesiology; 1989 Mar; 70(3):489-95. PubMed ID: 2923296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of phrenic motoneurones of the cat to stimulation of medullary raphe nuclei.
    Lalley PM
    J Physiol; 1986 Nov; 380():349-71. PubMed ID: 3112370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ventilatory responses to lung inflation and arterial CO2 in halothane-anesthetized dogs.
    Mitchell GS; Selby BD
    J Appl Physiol (1985); 1988 Apr; 64(4):1433-8. PubMed ID: 3132447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separate effects of halothane and carbon dioxide on respiratory duration in vagotomized cats.
    Nishino T; Honda Y; Yonezawa T
    Br J Anaesth; 1983 Jul; 55(7):647-54. PubMed ID: 6409136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Respiratory-related hypoglossal nerve activity: influence of anesthetics.
    Hwang JC; St John WM; Bartlett D
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Sep; 55(3):785-92. PubMed ID: 6629915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The distribution of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones in the cat.
    Davies JG; Kirkwood PA; Sears TA
    J Physiol; 1985 Nov; 368():63-87. PubMed ID: 4078753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graded changes in central chemoceptor input by local temperature changes on the ventral surface of medulla.
    Cherniack NS; von Euler C; Homma I; Kao FF
    J Physiol; 1979 Feb; 287():191-211. PubMed ID: 430396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of halothane anesthesia on the pattern of discharge of inspiratory and expiratory neurons in the region of the retrofacial nucleus.
    Grelot L; Bianchi AL
    Brain Res; 1987 Feb; 404(1-2):335-8. PubMed ID: 3567577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of trigeminal nasal afferents on bulbar respiratory neuronal activity.
    Wallois F; Macron JM; Jounieaux V; Duron B
    Brain Res; 1992 Dec; 599(1):105-16. PubMed ID: 1493542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation.
    Cohen MI
    J Physiol; 1971 Aug; 217(1):133-58. PubMed ID: 5571915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.