These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 7992917)

  • 41. Opioid receptors on bulbospinal respiratory neurons are not activated during neuronal depression by clinically relevant opioid concentrations.
    Stucke AG; Zuperku EJ; Sanchez A; Tonkovic-Capin M; Tonkovic-Capin V; Mustapic S; Stuth EA
    J Neurophysiol; 2008 Nov; 100(5):2878-88. PubMed ID: 18815346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discharge properties of dorsal medullary inspiratory neurons: relation to pulmonary afferent and phrenic efferent discharge.
    Cohen MI; Feldman JL
    J Neurophysiol; 1984 Apr; 51(4):753-76. PubMed ID: 6716123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Respiratory responses in reversible diaphragm paralysis.
    Nochomovitz ML; Goldman M; Mitra J; Cherniack NS
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1150-6. PubMed ID: 6795166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of respiratory-related trigeminal, hypoglossal and phrenic activities.
    St John WM; Bledsoe TA
    Respir Physiol; 1985 Oct; 62(1):61-78. PubMed ID: 4070836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dorsal and ventral respiratory groups of neurons in the medulla of the rat.
    Saether K; Hilaire G; Monteau R
    Brain Res; 1987 Sep; 419(1-2):87-96. PubMed ID: 3676744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of halothane on medullary inspiratory neurons of the cat.
    Tabatabai M; Kitahata LM; Yuge O; Matsumoto M; Collins JG
    Anesthesiology; 1987 Feb; 66(2):176-80. PubMed ID: 3813079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bötzinger expiratory neurons may inhibit phrenic motoneurons and medullary inspiratory neurons during vomiting.
    Miller AD; Nonaka S
    Brain Res; 1990 Jun; 521(1-2):352-4. PubMed ID: 2207674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discharge patterns of bulbar respiratory neurons in response to the morphinomimetic agent, fentanyl, in chloralosed dogs.
    Laubie M; Drouillat M; Schmitt H
    Eur J Pharmacol; 1986 Apr; 122(3):301-9. PubMed ID: 2872067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of halothane and thiopental on respiratory-related nerve activities in decerebrate cats.
    Masuda A; Ito Y; Haji A; Takeda R
    Acta Anaesthesiol Scand; 1989 Nov; 33(8):660-5. PubMed ID: 2511728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns.
    Dogas Z; Krolo M; Stuth EA; Tonkovic-Capin M; Hopp FA; McCrimmon DR; Zuperku EJ
    J Neurophysiol; 1998 Nov; 80(5):2368-77. PubMed ID: 9819249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decussation of bulbospinal respiratory axons at the level of the phrenic nuclei in adult rats: a possible substrate for the crossed phrenic phenomenon.
    Goshgarian HG; Ellenberger HH; Feldman JL
    Exp Neurol; 1991 Jan; 111(1):135-9. PubMed ID: 1984430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dopamine1 receptor agonists reverse opioid respiratory network depression, increase CO2 reactivity.
    Lalley PM
    Respir Physiol Neurobiol; 2004 Feb; 139(3):247-62. PubMed ID: 15122991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alteration of ventilatory activity by intralaryngeal CO2 in the cat.
    Bartlett D; Knuth SL; Leiter JC
    J Physiol; 1992 Nov; 457():177-85. PubMed ID: 1297832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NMDA and non-NMDA receptors may play distinct roles in timing mechanisms and transmission in the feline respiratory network.
    Pierrefiche O; Foutz AS; Champagnat J; Denavit-Saubié M
    J Physiol; 1994 Feb; 474(3):509-23. PubMed ID: 8014910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential alteration by hypercapnia and hypoxia of the apneustic respiratory pattern in decerebrate cats.
    St John WM
    J Physiol; 1979 Feb; 287():467-91. PubMed ID: 430430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of volatile anesthetics on respiratory activity and chemosensitivity in the isolated brainstem-spinal cord of the newborn rat.
    Otsuka H
    Hokkaido Igaku Zasshi; 1998 Mar; 73(2):117-36. PubMed ID: 9612706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical activation of caudal medullary expiratory neurones alters the pattern of breathing in the cat.
    Bongianni F; Corda M; Fontana GA; Pantaleo T
    J Physiol; 1994 Feb; 474(3):497-507. PubMed ID: 8014909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin.
    Lindsay AD; Feldman JL
    J Physiol; 1993 Feb; 461():213-33. PubMed ID: 8350262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The medullary respiratory network in the rat.
    Schwarzacher SW; Wilhelm Z; Anders K; Richter DW
    J Physiol; 1991 Apr; 435():631-44. PubMed ID: 1770454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Excitatory connections between upper cervical inspiratory neurons and phrenic motoneurons in cats.
    Nakazono Y; Aoki M
    J Appl Physiol (1985); 1994 Aug; 77(2):679-83. PubMed ID: 8002514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.