These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 7993082)
1. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Goto M; Semimaru T; Furukawa K; Hayashida S Appl Environ Microbiol; 1994 Nov; 60(11):3926-30. PubMed ID: 7993082 [TBL] [Abstract][Full Text] [Related]
2. Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Semimaru T; Goto M; Furukawa K; Hayashida S Appl Environ Microbiol; 1995 Aug; 61(8):2885-90. PubMed ID: 7487021 [TBL] [Abstract][Full Text] [Related]
3. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch. Goto M; Kuwano E; Kanlayakrit W; Hayashida S Biosci Biotechnol Biochem; 1995 Jan; 59(1):16-20. PubMed ID: 7765970 [TBL] [Abstract][Full Text] [Related]
4. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Fukuda K; Teramoto Y; Goto M; Sakamoto J; Mitsuiki S; Hayashida S Biosci Biotechnol Biochem; 1992 Apr; 56(4):556-9. PubMed ID: 1368209 [TBL] [Abstract][Full Text] [Related]
5. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Chen L; Coutinho PM; Nikolov Z; Ford C Protein Eng; 1995 Oct; 8(10):1049-55. PubMed ID: 8771186 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast. Goto M; Tsukamoto M; Kwon I; Ekino K; Furukawa K Eur J Biochem; 1999 Mar; 260(3):596-602. PubMed ID: 10102986 [TBL] [Abstract][Full Text] [Related]
7. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Shibuya I; Tamura G; Shima H; Ishikawa T; Hara S Biosci Biotechnol Biochem; 1992 Jun; 56(6):884-9. PubMed ID: 1368253 [TBL] [Abstract][Full Text] [Related]
8. Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase. Evans R; Ford C; Sierks M; Nikolov Z; Svensson B Gene; 1990 Jul; 91(1):131-4. PubMed ID: 2119327 [TBL] [Abstract][Full Text] [Related]
9. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase. Libby CB; Cornett CA; Reilly PJ; Ford C Protein Eng; 1994 Sep; 7(9):1109-14. PubMed ID: 7831281 [TBL] [Abstract][Full Text] [Related]
10. Expression and functional analysis of a hyperglycosylated glucoamylase in a parental host, Aspergillus awamori var. kawachi. Goto M; Ekino K; Furukawa K Appl Environ Microbiol; 1997 Jul; 63(7):2940-3. PubMed ID: 9212440 [TBL] [Abstract][Full Text] [Related]
11. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH Appl Microbiol Biotechnol; 2012 Aug; 95(4):957-68. PubMed ID: 22450569 [TBL] [Abstract][Full Text] [Related]
12. Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Coutinho PM; Reilly PJ Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888 [TBL] [Abstract][Full Text] [Related]
13. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Kim JH; Kim HR; Lim MH; Ko HM; Chin JE; Lee HB; Kim IC; Bai S Biotechnol Lett; 2010 May; 32(5):713-9. PubMed ID: 20131079 [TBL] [Abstract][Full Text] [Related]
14. Structural similarities in glucoamylase by hydrophobic cluster analysis. Coutinho PM; Reilly PJ Protein Eng; 1994 Jun; 7(6):749-60. PubMed ID: 7937705 [TBL] [Abstract][Full Text] [Related]
15. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. de Moraes LM; Astolfi-Filho S; Oliver SG Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658 [TBL] [Abstract][Full Text] [Related]
16. Alteration of the properties of Aspergillus sp. K-27 glucoamylase on limited proteolysis with subtilisin. Abe J; Nakajima K; Hizukuri S Carbohydr Res; 1990 Aug; 203(1):129-38. PubMed ID: 2224899 [TBL] [Abstract][Full Text] [Related]
17. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
18. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Hata Y; Kitamoto K; Gomi K; Kumagai C; Tamura G; Hara S Agric Biol Chem; 1991 Apr; 55(4):941-9. PubMed ID: 1368680 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning and determination of the nucleotide sequence of raw starch digesting alpha-amylase from Aspergillus awamori KT-11. Matsubara T; Ben Ammar Y; Anindyawati T; Yamamoto S; Ito K; Iizuka M; Minamiura N J Biochem Mol Biol; 2004 Jul; 37(4):429-38. PubMed ID: 15469730 [TBL] [Abstract][Full Text] [Related]
20. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]