These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 7993091)

  • 41. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid.
    Kunz DA; Chapman PJ
    J Bacteriol; 1981 Apr; 146(1):179-91. PubMed ID: 7216999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid.
    Whited GM; McCombie WR; Kwart LD; Gibson DT
    J Bacteriol; 1986 Jun; 166(3):1028-39. PubMed ID: 3711022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria.
    Harms G; Rabus R; Widdel F
    Arch Microbiol; 1999 Nov; 172(5):303-12. PubMed ID: 10550472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4736-43. PubMed ID: 16085870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.
    Jahn MK; Haderlein SB; Meckenstock RU
    Appl Environ Microbiol; 2005 Jun; 71(6):3355-8. PubMed ID: 15933041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1.
    Yu H; Kim BJ; Rittmann BE
    Biodegradation; 2001; 12(6):455-63. PubMed ID: 12051651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, O-, and m-xylene by sulfate-reducing bacteria.
    Morasch B; Annweiler E; Warthmann RJ; Meckenstock RU
    J Microbiol Methods; 2001 Mar; 44(2):183-91. PubMed ID: 11165347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial metabolism of para- and meta-xylene: oxidation of the aromatic ring.
    Gibson DT; Mahadevan V; Davey JF
    J Bacteriol; 1974 Sep; 119(3):930-6. PubMed ID: 4850728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regioselective oxidation of xylene isomers by Rhodococcus sp. strain DK17.
    Kim D; Kim YS; Jung JW; Zylstra GJ; Kim YM; Kim SK; Kim E
    FEMS Microbiol Lett; 2003 Jun; 223(2):211-4. PubMed ID: 12829288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Peripheral metabolism of isomeric xylenes by Pseudomonas aeruginosa].
    Skriabin GK; Ganbarov KhG; Golovleva LA; Chervin II; Adanin VM
    Mikrobiologiia; 1976; 45(6):951-4. PubMed ID: 827670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Denitrification in presence of benzene, toluene, and m-xylene: kinetics, mass balance, and yields.
    Peña-Calva A; Olmos-Dichara A; Viniegra-González G; Cuervo-López FM; Gómez J
    Appl Biochem Biotechnol; 2004 Dec; 119(3):195-208. PubMed ID: 15591614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation.
    Wubbolts MG; Reuvekamp P; Witholt B
    Enzyme Microb Technol; 1994 Jul; 16(7):608-15. PubMed ID: 7764991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens.
    Kane SR; Beller HR; Legler TC; Anderson RT
    Biodegradation; 2002; 13(2):149-54. PubMed ID: 12449317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methanogenic toluene metabolism: community structure and intermediates.
    Fowler SJ; Dong X; Sensen CW; Suflita JM; Gieg LM
    Environ Microbiol; 2012 Mar; 14(3):754-64. PubMed ID: 22040260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidating the Stereochemistry of Enzymatic Benzylsuccinate Synthesis with Chirally Labeled Toluene.
    Seyhan D; Friedrich P; Szaleniec M; Hilberg M; Buckel W; Golding BT; Heider J
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11664-7. PubMed ID: 27503670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities.
    Gülensoy N; Alvarez PJ
    Biodegradation; 1999; 10(5):331-40. PubMed ID: 10870549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers.
    Reusser DE; Istok JD; Beller HR; Field JA
    Environ Sci Technol; 2002 Oct; 36(19):4127-34. PubMed ID: 12380085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.
    Lochmeyer C; Koch J; Fuchs G
    J Bacteriol; 1992 Jun; 174(11):3621-8. PubMed ID: 1592816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns.
    Da Silva ML; Alvarez PJ
    Appl Environ Microbiol; 2004 Aug; 70(8):4720-6. PubMed ID: 15294807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.