These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7993196)

  • 1. Novel method to determine instantaneous blood volume in pulsatile blood pump using electrical impedance.
    Sasaki E; Nakatani T; Taenaka Y; Takano H; Hirose H
    Artif Organs; 1994 Aug; 18(8):603-10. PubMed ID: 7993196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous monitoring of artificial heart pump performance.
    Sasaki E; Nakatani T; Taenaka Y; Noda H; Tatsumi E; Akagi H; Masuzawa T; Goto M; Sakaki M; Matsuo Y
    ASAIO Trans; 1991; 37(3):M429-30. PubMed ID: 1751222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and in vivo evaluation of an implantable left ventricular assist system with an impedance based monitoring and control system.
    Nakatani T; Anai H; Eya K; Wakisaka Y; Toda K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Takano H
    ASAIO J; 1995; 41(3):M324-7. PubMed ID: 8573817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile blood pump with a linear drive actuator.
    Fukunaga K; Homma A; Funakubo A; Tatsumi E; Taenaka Y; Kitamura S; Fukui Y
    J Artif Organs; 2007; 10(2):77-84. PubMed ID: 17574509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An abdominally placed, implantable left ventricular assist system for long-term use.
    Nakatani T; Anai H; Goto M; Sasaki E; Taenaka Y; Kinoshita M; Akagi H; Masuzawa T; Baba Y; Sakaki M
    ASAIO J; 1992; 38(3):M631-3. PubMed ID: 1457937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable left ventricular assist system with an electrical impedance monitoring and control system.
    Nakatani T; Anai H; Taenaka Y; Akagi H; Masuzawa T; Baba Y; Sakaki M; Araki K; Inoue K; Matsuo Y
    ASAIO J; 1993; 39(3):M644-8. PubMed ID: 8268617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of cardia output by the thoracic impedance method.
    Adamicza A; Tutsek L; Nagy S
    Acta Physiol Hung; 1988; 71(3):395-408. PubMed ID: 3421117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer controlled pulsatile pump: preliminary study.
    Zwarts MS; Topaz SR; Jones DN; Kolff WJ
    Int J Artif Organs; 1996 Dec; 19(12):719-22. PubMed ID: 9029248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of left ventricular function and drive pressures on the filling and ejection of a pulsatile pediatric ventricular assist device in an acute animal model.
    Lukic B; Zapanta CM; Khalapyan T; Connell J; Pae WE; Myers JL; Wilson RP; Undar A; Rosenberg G; Weiss WJ
    ASAIO J; 2007; 53(3):379-84. PubMed ID: 17515733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance stroke volume compared with dye and electromagnetic flowmeter values during drug-induced inotropic and vascular changes in dogs.
    Patterson RP; Witsoe DA; From A
    Ann N Y Acad Sci; 1999 Apr; 873():143-8. PubMed ID: 10372162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile blood flow from impeller pump: a dream has come true.
    Qian KX
    J Biomater Appl; 1994 Oct; 9(2):158-77. PubMed ID: 7782998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility.
    Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E
    Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal control algorithm for pneumatic ventricular assist devices: its application to automatic control and monitoring of ventricular assist devices.
    Arai H; Fujiyoshi K; Sakamoto T; Suzuki A; Swartz MT
    Artif Organs; 1996 Sep; 20(9):1034-41. PubMed ID: 8864025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile flow pump based on an iterative controlled piston pump actuator as an in-vitro cardiovascular flow model.
    Kim J; Lee Y; Choi S; Ha H
    Med Eng Phys; 2020 Mar; 77():118-124. PubMed ID: 31924498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro flow characteristics of a new pump with a high inherent sensitivity to venous return.
    Liska J; Lundbäck S; Semb BK
    ASAIO Trans; 1991; 37(4):592-7. PubMed ID: 1768495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device.
    Amacher R; Weber A; Brinks H; Axiak S; Ferreira A; Guzzella L; Carrel T; Antaki J; Vandenberghe S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):710-7. PubMed ID: 23317942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device.
    Travis AR; Giridharan GA; Pantalos GM; Dowling RD; Prabhu SD; Slaughter MS; Sobieski M; Undar A; Farrar DJ; Koenig SC
    J Thorac Cardiovasc Surg; 2007 Feb; 133(2):517-24. PubMed ID: 17258591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a non-pulsatile permanent rotary blood pump.
    Nose Y; Kawahito K
    Eur J Cardiothorac Surg; 1997 Apr; 11 Suppl():S32-8. PubMed ID: 9271179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
    Pirbodaghi T; Cotter C; Bourque K
    Artif Organs; 2014 Dec; 38(12):1024-8. PubMed ID: 24842216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.