These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 7993904)
1. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin. Friedman N; Gat Y; Sheves M; Ottolenghi M Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904 [TBL] [Abstract][Full Text] [Related]
2. Pathway of proton uptake in the bacteriorhodopsin photocycle. Zimányi L; Cao Y; Needleman R; Ottolenghi M; Lanyi JK Biochemistry; 1993 Aug; 32(30):7669-78. PubMed ID: 8347577 [TBL] [Abstract][Full Text] [Related]
3. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157 [TBL] [Abstract][Full Text] [Related]
6. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Eisfeld W; Pusch C; Diller R; Lohrmann R; Stockburger M Biochemistry; 1993 Jul; 32(28):7196-215. PubMed ID: 8343509 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Váró G; Lanyi JK Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187 [TBL] [Abstract][Full Text] [Related]
8. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [TBL] [Abstract][Full Text] [Related]
9. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle. Brown LS; Váró G; Needleman R; Lanyi JK Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354 [TBL] [Abstract][Full Text] [Related]
10. Relocation of internal bound water in bacteriorhodopsin during the photoreaction of M at low temperatures: an FTIR study. Maeda A; Tomson FL; Gennis RB; Kandori H; Ebrey TG; Balashov SP Biochemistry; 2000 Aug; 39(33):10154-62. PubMed ID: 10956004 [TBL] [Abstract][Full Text] [Related]
11. Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle. Váró G; Lanyi JK Biochemistry; 1995 Sep; 34(38):12161-9. PubMed ID: 7547956 [TBL] [Abstract][Full Text] [Related]
12. Water is required for proton transfer from aspartate-96 to the bacteriorhodopsin Schiff base. Cao Y; Váró G; Chang M; Ni BF; Needleman R; Lanyi JK Biochemistry; 1991 Nov; 30(45):10972-9. PubMed ID: 1657155 [TBL] [Abstract][Full Text] [Related]
13. Pathways of proton release in the bacteriorhodopsin photocycle. Zimányi L; Váró G; Chang M; Ni B; Needleman R; Lanyi JK Biochemistry; 1992 Sep; 31(36):8535-43. PubMed ID: 1327104 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin. Steinberg G; Sheves M; Bressler S; Ottolenghi M Biochemistry; 1994 Oct; 33(41):12439-50. PubMed ID: 7918466 [TBL] [Abstract][Full Text] [Related]
15. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements. Zimányi L; Cao Y; Chang M; Ni B; Needleman R; Lanyi JK Photochem Photobiol; 1992 Dec; 56(6):1049-55. PubMed ID: 1337212 [TBL] [Abstract][Full Text] [Related]
16. Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Coleman M; Nilsson A; Russell TS; Rath P; Pandey R; Rothschild KJ Biochemistry; 1995 Nov; 34(47):15599-606. PubMed ID: 7492563 [TBL] [Abstract][Full Text] [Related]
17. Reaction cycle and thermodynamics in bacteriorhodopsin. Lanyi JK Acta Physiol Scand Suppl; 1992; 607():245-8. PubMed ID: 1449068 [TBL] [Abstract][Full Text] [Related]
18. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
19. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin. Drachev LA; Kaulen AD; Komrakov AYu Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304 [TBL] [Abstract][Full Text] [Related]
20. The ability of actinic light to modify the bacteriorhodopsin photocycle. Heterogeneity and/or photocooperativity? Shrager RI; Hendler RW; Bose S Eur J Biochem; 1995 May; 229(3):589-95. PubMed ID: 7758451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]