These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7993909)

  • 41. Antibody-free peptide substrate screening of serine/threonine kinase (protein kinase A) with a biotinylated detection probe.
    Kim M; Park YS; Shin DS; Kim J; Kim BG; Lee YS
    Anal Biochem; 2011 Jun; 413(1):30-5. PubMed ID: 21310143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphoserine in peptide substrates can specify casein kinase II action.
    Hrubey TW; Roach PJ
    Biochem Biophys Res Commun; 1990 Oct; 172(1):190-6. PubMed ID: 2171517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of Rho-associated kinase (Rho-kinase/ROCK/ROK) substrates by protein kinases A and C.
    Kang JH; Jiang Y; Toita R; Oishi J; Kawamura K; Han A; Mori T; Niidome T; Ishida M; Tatematsu K; Tanizawa K; Katayama Y
    Biochimie; 2007 Jan; 89(1):39-47. PubMed ID: 16996192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of "one-bead one-compound" combinatorial library methods in signal transduction research.
    Lam KS; Sroka T; Chen ML; Zhao Y; Lou Q; Wu J; Zhao ZG
    Life Sci; 1998; 62(17-18):1577-83. PubMed ID: 9585139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential responses of cyclic GMP-dependent and cyclic AMP-dependent protein kinases to synthetic peptide inhibitors.
    Glass DB
    Biochem J; 1983 Jul; 213(1):159-64. PubMed ID: 6615418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for the low affinities of yeast cAMP-dependent and mammalian cGMP-dependent protein kinases for protein kinase inhibitor peptides.
    Glass DB; Feller MJ; Levin LR; Walsh DA
    Biochemistry; 1992 Feb; 31(6):1728-34. PubMed ID: 1310617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic segments of the mammalian beta AR are preferentially recognized by cAMP-dependent protein kinase and protein kinase C.
    Blake AD; Mumford RA; Strout HV; Slater EE; Strader CD
    Biochem Biophys Res Commun; 1987 Aug; 147(1):168-73. PubMed ID: 2820394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.
    Toroser D; Huber SC
    Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques.
    Grant BD; Adams JA
    Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the mechanism of phosphorylation of synthetic polypeptides by a calf thymus cyclic AMP-dependent protein kinase.
    Pomerantz AH; Allfrey VG; Merrifield RB; Johnson EM
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4261-5. PubMed ID: 200911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determinants of multi-site phosphorylation of peptide analogues of ribosomal protein S6 by novel protease-activated protein kinases.
    Wettenhall RE; Gabrielli B; Morrice N; Bozinova L; Kemp BE; Stapleton D
    Pept Res; 1991; 4(3):158-70. PubMed ID: 1823186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A peptide model system for processive phosphorylation by Src family kinases.
    Scott MP; Miller WT
    Biochemistry; 2000 Nov; 39(47):14531-7. PubMed ID: 11087407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of amino acid residues involved in substrate recognition by the catalytic subunit of bovine cyclic AMP dependent protein kinase: peptide-based affinity labels.
    Mobashery S; Kaiser ET
    Biochemistry; 1988 May; 27(10):3691-6. PubMed ID: 3408721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the substrate specificity of cAMP-dependent protein kinase using diastereomeric peptides.
    Eller M; Sepp A; Toomik R; Ekman P; Järv J; Ragnarsson U; Engström L
    Biochem Int; 1991 Oct; 25(3):453-60. PubMed ID: 1805790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of peptide substrate motifs for protein kinases using a "one-bead one-compound" combinatorial library approach.
    Lam KS
    Methods Mol Biol; 1998; 87():83-6. PubMed ID: 9523262
    [No Abstract]   [Full Text] [Related]  

  • 56. Prediction of kinase-specific phosphorylation sites through an integrative model of protein context and sequence.
    Patrick R; Horin C; Kobe B; Cao KA; Bodén M
    Biochim Biophys Acta; 2016 Nov; 1864(11):1599-608. PubMed ID: 27507704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative study of the prereactive protein kinase A Michaelis complex with kemptide substrate.
    Montenegro M; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Comput Aided Mol Des; 2007; 21(10-11):603-15. PubMed ID: 18008170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. "Cut and combine": an easy membrane-supported combinatorial synthesis technique.
    Dittrich F; Tegge W; Frank R
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2351-6. PubMed ID: 9873540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein kinase recognition sequence motifs.
    Kemp BE; Pearson RB
    Trends Biochem Sci; 1990 Sep; 15(9):342-6. PubMed ID: 2238044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One bead-one compound combinatorial peptide library: different types of screening.
    Chen CL; Strop P; Lebl M; Lam KS
    Methods Enzymol; 1996; 267():211-9. PubMed ID: 8743318
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.