BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7994398)

  • 1. A convenient method for the determination of the solubility of hemoglobin and modified hemoglobins.
    Anderson PJ; Biro GP
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):753-61. PubMed ID: 7994398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diaspirin crosslinked hemoglobin (DCLHb) polymerization.
    Hai TT; Nelson D; Pereira D; Srnak A
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):923-31. PubMed ID: 7994419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the polymerization step alone on oxygen affinity and cooperativity during production of hyperpolymers from native hemoglobins with crosslinkers.
    Barnikol WK
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):725-31. PubMed ID: 7994394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large scale preparation of functional human placental hemoglobin for use in blood substitutes.
    Fasan G; Vigneron C; Dellacherie E; Grandgeorge M
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):489-91. PubMed ID: 1391468
    [No Abstract]   [Full Text] [Related]  

  • 5. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer.
    Chen K; Ballas SK; Hantgan RR; Kim-Shapiro DB
    Biophys J; 2004 Dec; 87(6):4113-21. PubMed ID: 15465861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stabilities of hemoglobins crosslinked with different length reagents.
    Huang H; Olsen KW
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):719-24. PubMed ID: 7994393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the capacity to generate and preserve nitric oxide bioactivity in highly purified earthworm erythrocruorin: a giant polymeric hemoglobin with potential blood substitute properties.
    Roche CJ; Talwar A; Palmer AF; Cabrales P; Gerfen G; Friedman JM
    J Biol Chem; 2015 Jan; 290(1):99-117. PubMed ID: 25371199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin.
    Galkin O; Chen K; Nagel RL; Hirsch RE; Vekilov PG
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8479-83. PubMed ID: 12070342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics of a hemoglobin crosslinking reaction.
    Pavlik PA; Boyd MK; Olsen KW
    Biopolymers; 1996 Oct; 39(4):615-8. PubMed ID: 8837523
    [No Abstract]   [Full Text] [Related]  

  • 12. Regioselective covalent modification of hemoglobin in search of antisickling agents.
    Park S; Hayes BL; Marankan F; Mulhearn DC; Wanna L; Mesecar AD; Santarsiero BD; Johnson ME; Venton DL
    J Med Chem; 2003 Mar; 46(6):936-53. PubMed ID: 12620071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and chemical modifications of hemoglobin in developing hemoglobin based oxygen carriers.
    Haney CR; Buehler PW; Gulati A
    Adv Drug Deliv Rev; 2000 Feb; 40(3):153-69. PubMed ID: 10837787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submicron biodegradable polymer membrane hemoglobin nanocapsules as potential blood substitutes: a preliminary report.
    Yu WP; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):889-93. PubMed ID: 7994414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparative separation of hemoglobins A and S by gel electrofocusing, using selective zone elution by gel transposition between suitable anolytes and catholytes.
    McCormick AG; Wachslicht H; Chrambach A
    Anal Biochem; 1978 Mar; 85(1):209-18. PubMed ID: 24367
    [No Abstract]   [Full Text] [Related]  

  • 16. Preparation and characterization of crosslinked and polymerized hemoglobin solutions.
    Bakker JC; Berbers GA; Bleeker WK; den Boer PJ; Biessels PT
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):233-41. PubMed ID: 1391437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proton Bohr factor of native and crosslinker treated hemoglobins--its possible significance for the efficacy of hemoglobin based artificial oxygen carriers.
    Barnikol WK
    Adv Exp Med Biol; 1994; 361():363-70. PubMed ID: 7597959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerization and solubility of recombinant hemoglobins alpha 2 beta 2 (6Val) (Hb S) and alpha 2 beta 2(6Leu) (Hb Leu).
    Adachi K; Rappaport E; Eck HS; Konitzer P; Kim J; Surrey S
    Hemoglobin; 1991; 15(5):417-30. PubMed ID: 1802884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of asymmetrical hybrid hemoglobins by hydrophobic interaction chromatography.
    Adachi K; Asakura T
    J Chromatogr; 1987 Aug; 419():303-7. PubMed ID: 2444610
    [No Abstract]   [Full Text] [Related]  

  • 20. Convenient method to purify hemoglobin.
    Sakai H; Takeoka S; Nishide H; Tsuchida E
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):651-6. PubMed ID: 7994386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.