BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7994564)

  • 1. Effects of novel antiarrhythmic agents, BRB-I-28 and its derivatives, on the heart mitochondrial respiratory chain and sarcoplasmic reticulum Ca(2+)-ATPase.
    Chen CL; Sangiah S; Yu CA; Chen H; Berlin KD; Garrison GL; Scherlag BJ; Lazzara R
    Res Commun Mol Pathol Pharmacol; 1994 Aug; 85(2):193-208. PubMed ID: 7994564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of BRB-I-28, a novel antiarrhythmic agent, and its derivatives on cardiac Na+,K(+)-ATPase, Mg(2+)-ATPase activities and contractile force.
    Chen CL; Sangiah S; Patterson E; Berlin KD; Garrison GL; Dunn W; Nan Y; Scherlag BJ; Lazzara R
    Res Commun Chem Pathol Pharmacol; 1992 Oct; 78(1):3-16. PubMed ID: 1334277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.
    Cherednichenko G; Zima AV; Feng W; Schaefer S; Blatter LA; Pessah IN
    Circ Res; 2004 Mar; 94(4):478-86. PubMed ID: 14699012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flunarizine and cinnarizine inhibit mitochondrial complexes I and II: possible implication for parkinsonism.
    Veitch K; Hue L
    Mol Pharmacol; 1994 Jan; 45(1):158-63. PubMed ID: 8302275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity.
    Anderson WM; Trgovcich-Zacok D
    Biochem Pharmacol; 1995 May; 49(9):1303-11. PubMed ID: 7763312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase.
    Schewe T; Albracht SP; Ludwig P
    Biochim Biophys Acta; 1981 Jul; 636(2):210-7. PubMed ID: 6269601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics.
    Chazotte B; Vanderkooi G
    Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The action of beta-adrenoceptor antagonists on rat heart mitochondrial function in vitro: a comparison of propranolol, timolol, and atenolol.
    Quinn PJ; Crutcher EC
    Cardiovasc Res; 1984 Apr; 18(4):212-9. PubMed ID: 6713449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further observations on the inhibition of NADH oxidase by short chain ubiquinone homologs.
    Pasquali P; Landi L; Cabrini L; Sechi AM; Lenaz G
    Boll Soc Ital Biol Sper; 1982 May; 58(10):585-90. PubMed ID: 6810905
    [No Abstract]   [Full Text] [Related]  

  • 16. NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe3+.
    Demant EJ
    Eur J Biochem; 1983 Dec; 137(1-2):113-8. PubMed ID: 6317378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical aspects of the mechanism of action of antiarrhythmic drugs on mitochondria. VII. Effect on energy-linked reactions and on membrane potential.
    Klüppel ML; Borba HR; Silveira O; Lopes LC; Campello Ade P
    Cell Biochem Funct; 1986 Oct; 4(4):289-96. PubMed ID: 2878737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The comparative antiarrhythmic and proarrhythmic activity of a 3,7-diheterobicyclo[3.3.1]nonane, BRB-I-28, and lidocaine in the 1-4-day-old infarcted dog heart.
    Fazekas T; Scherlag BJ; Mabo P; Berlin KD; Garrison GL; Chen CL; Sangiah S; Patterson E; Lazzara R
    Acta Physiol Hung; 1993; 81(3):289-99. PubMed ID: 8197884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the mitochondrial Mg2+-ATPase by propranolol.
    Wei YH; Lin TN; Hong CY; Chiang BN
    Biochem Pharmacol; 1985 Apr; 34(7):911-7. PubMed ID: 3157382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.