BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7995070)

  • 1. Suppression of corneal allograft rejection by systemic cyclosporine-A in heavily vascularized rabbit corneas following alkali burns.
    Rehany U; Waisman M
    Cornea; 1994 Sep; 13(5):447-53. PubMed ID: 7995070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of high risk corneal graft rejection using cyclosporine A (CsA) incorporated into a collagen matrix.
    Mahlberg K; Uusitalo RJ; Oksala O
    Ocul Immunol Inflamm; 1997 Jun; 5(2):101-10. PubMed ID: 9234374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed lymphocyte culture responses in rabbits undergoing corneal grafting and topical cyclosporine treatment.
    Maske R; Hill JC; Horak S
    Cornea; 1994 Jul; 13(4):324-30. PubMed ID: 7924332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy.
    Cejkova J; Cejka C; Trosan P; Zajicova A; Sykova E; Holan V
    Exp Eye Res; 2016 Jun; 147():128-137. PubMed ID: 27181227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed.
    Ling S; Qi C; Li W; Xu J; Kuang W
    Clin Exp Ophthalmol; 2009 Dec; 37(9):874-83. PubMed ID: 20092597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas.
    Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J
    Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model.
    Hackett JM; Lagali N; Merrett K; Edelhauser H; Sun Y; Gan L; Griffith M; Fagerholm P
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):651-7. PubMed ID: 20847116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclosporine a drug-delivery system for high-risk penetrating keratoplasty: Stabilizing the intraocular immune microenvironment.
    Zhang T; Li Z; Liu T; Li S; Gao H; Wei C; Shi W
    PLoS One; 2018; 13(5):e0196571. PubMed ID: 29734357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limbal autograft and allograft transplantations in patients with corneal burns.
    Ozdemir O; Tekeli O; Ornek K; Arslanpençe A; Yalçindağ NF
    Eye (Lond); 2004 Mar; 18(3):241-8. PubMed ID: 15004571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long term observation of ocular surface alkali burn in rabbit models: Quantitative analysis of corneal haze, vascularity and self-recovery.
    Kethiri AR; Singh VK; Damala M; Basu S; Rao CM; Bokara KK; Singh V
    Exp Eye Res; 2021 Apr; 205():108526. PubMed ID: 33662355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclosporine in collagen particles: corneal penetration and suppression of allograft rejection.
    Gebhardt BM; Varnell ED; Kaufman HE
    J Ocul Pharmacol Ther; 1995; 11(4):509-17. PubMed ID: 8574814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental efficacy of mycophenolate mofetil implant on high-risk corneal allograft rejection and its biocompatibility in the anterior chamber of rabbits.
    Xin M; Wang T; Shi W; Wu X
    J Ocul Pharmacol Ther; 2012 Dec; 28(6):609-17. PubMed ID: 22846154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a topical cyclosporine A prodrug on corneal graft rejection in rats.
    Bourges JL; Lallemand F; Agla E; Besseghir K; Dumont JM; BenEzra D; Gurny R; Behar-Cohen F
    Mol Vis; 2006 Dec; 12():1461-6. PubMed ID: 17167400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Donor source affects the outcome of ocular surface reconstruction in chemical or thermal burns of the cornea.
    Shimazaki J; Shimmura S; Tsubota K
    Ophthalmology; 2004 Jan; 111(1):38-44. PubMed ID: 14711712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation.
    Cejka C; Cejkova J; Trosan P; Zajicova A; Sykova E; Holan V
    Histol Histopathol; 2016 Sep; 31(9):969-80. PubMed ID: 26797822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prolongation of corneal allograft survival in mice with a cyclosporine drug delivery system implant].
    Shi W; Xie L; Wang S
    Zhonghua Yan Ke Za Zhi; 2002 Aug; 38(8):502-5. PubMed ID: 12410993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does amniotic membrane transplantation improve the outcome of autologous limbal transplantation?
    Marinho D; Höfling-Lima AL; Kwitko S; Tseng SC
    Cornea; 2003 May; 22(4):338-42. PubMed ID: 12792477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye.
    Milani JK; Pleyer U; Dukes A; Chou HJ; Lutz S; Rückert D; Schmidt KH; Mondino BJ
    Ophthalmology; 1993 Jun; 100(6):890-6. PubMed ID: 8510902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolongation of corneal allograft survival using cyclosporine in a polylactide-co-glycolide polymer.
    Xie L; Shi W; Wang Z; Bei J; Wang S
    Cornea; 2001 Oct; 20(7):748-52. PubMed ID: 11588429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.
    Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V
    Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.