BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7996384)

  • 1. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.
    Takanaga H; Tamai I; Tsuji A
    J Pharm Pharmacol; 1994 Jul; 46(7):567-70. PubMed ID: 7996384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective and carrier-mediated transport of monocarboxylic acids across Caco-2 cells.
    Ogihara T; Tamai I; Takanaga H; Sai Y; Tsuji A
    Pharm Res; 1996 Dec; 13(12):1828-32. PubMed ID: 8987079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier-mediated transport of monocarboxylic acids in primary cultured epithelial cells from rabbit oral mucosa.
    Utoguchi N; Watanabe Y; Suzuki T; Maehara J; Matsumoto Y; Matsumoto M
    Pharm Res; 1997 Mar; 14(3):320-4. PubMed ID: 9098874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids.
    Kang YS; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 Feb; 13(2):158-63. PubMed ID: 2117062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells.
    Terasaki T; Takakuwa S; Moritani S; Tsuji A
    J Pharmacol Exp Ther; 1991 Sep; 258(3):932-7. PubMed ID: 1890627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles.
    Simanjuntak MT; Terasaki T; Tamai I; Tsuji A
    J Pharmacobiodyn; 1991 Sep; 14(9):501-8. PubMed ID: 1779404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new interpretation of salicylic acid transport across the lipid bilayer: implications of pH-dependent but not carrier-mediated absorption from the gastrointestinal tract.
    Takagi M; Taki Y; Sakane T; Nadai T; Sezaki H; Oku N; Yamashita S
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1175-80. PubMed ID: 9618420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier-mediated transport of monocarboxylic acids in BeWo cell monolayers as a model of the human trophoblast.
    Utoguchi N; Magnusson M; Audus KL
    J Pharm Sci; 1999 Dec; 88(12):1288-92. PubMed ID: 10585224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers.
    Konishi Y; Shimizu M
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):856-62. PubMed ID: 12784628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro evidence for carrier-mediated uptake of acidic drugs by isolated bovine brain capillaries.
    Terasaki T; Kang YS; Ohnishi T; Tsuji A
    J Pharm Pharmacol; 1991 Mar; 43(3):172-6. PubMed ID: 1675273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier-mediated absorption of salicylic acid from hamster cheek pouch mucosa.
    Utoguchi N; Watanabe Y; Takase Y; Suzuki T; Matsumoto M
    J Pharm Sci; 1999 Jan; 88(1):142-6. PubMed ID: 9874716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availability.
    Konishi Y; Hagiwara K; Shimizu M
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2449-57. PubMed ID: 12506986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers.
    Neuhoff S; Ungell AL; Zamora I; Artursson P
    Eur J Pharm Sci; 2005 Jun; 25(2-3):211-20. PubMed ID: 15911216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms.
    Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A
    J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1.
    Tamai I; Sai Y; Ono A; Kido Y; Yabuuchi H; Takanaga H; Satoh E; Ogihara T; Amano O; Izeki S; Tsuji A
    J Pharm Pharmacol; 1999 Oct; 51(10):1113-21. PubMed ID: 10579682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers.
    Konishi Y; Kobayashi S; Shimizu M
    Biosci Biotechnol Biochem; 2003 Nov; 67(11):2317-24. PubMed ID: 14646189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier.
    Tsuji A; Saheki A; Tamai I; Terasaki T
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1085-90. PubMed ID: 8263769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1.
    Okamura A; Emoto A; Koyabu N; Ohtani H; Sawada Y
    Br J Pharmacol; 2002 Oct; 137(3):391-9. PubMed ID: 12237260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.