These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7996572)
1. Mock circulatory system for in vitro reproduction of the left ventricle, the arterial tree and their interaction with a left ventricular assist device. Ferrari G; De Lazzari C; Mimmo R; Ambrosi D; Tosti G J Med Eng Technol; 1994; 18(3):87-95. PubMed ID: 7996572 [TBL] [Abstract][Full Text] [Related]
2. A computer controlled mock circulatory system for mono- and biventricular assist device testing. Ferrari G; De Lazzari C; Mimmo R; Tosti G; Ambrosi D; Gorczynska K Int J Artif Organs; 1998 Jan; 21(1):26-36. PubMed ID: 9554823 [TBL] [Abstract][Full Text] [Related]
3. A desk-top computer model of the circulatory system for heart assistance simulation: effect of an LVAD on energetic relationships inside the left ventricle. De Lazzari C; Ferrari G; Mimmo R; Tosti G; Ambrosi D Med Eng Phys; 1994 Mar; 16(2):97-103. PubMed ID: 8205368 [TBL] [Abstract][Full Text] [Related]
4. Computer simulation of haemodynamic parameters changes with left ventricle assist device and mechanical ventilation. De Lazzari C; Darowski M; Ferrari G; Clemente F; Guaragno M Comput Biol Med; 2000 Mar; 30(2):55-69. PubMed ID: 10714442 [TBL] [Abstract][Full Text] [Related]
5. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988 [TBL] [Abstract][Full Text] [Related]
6. A hybrid mock circulatory system: development and testing of an electro-hydraulic impedance simulator. Kozarski M; Ferrari G; Clemente F; Górczyńska K; De Lazzari C; Darowski M; Mimmo R; Tosti G; Guaragno M Int J Artif Organs; 2003 Jan; 26(1):53-63. PubMed ID: 12602470 [TBL] [Abstract][Full Text] [Related]
7. Effects of Interaction Between Ventricular Assist Device Assistance and Autoregulated Mock Circulation Including Frank-Starling Mechanism and Baroreflex. Jansen-Park SH; Mahmood MN; Müller I; Turnhoff LK; Schmitz-Rode T; Steinseifer U; Sonntag SJ Artif Organs; 2016 Oct; 40(10):981-991. PubMed ID: 26582749 [TBL] [Abstract][Full Text] [Related]
8. Simulation of Ventricular, Cavo-Pulmonary, and Biventricular Ventricular Assist Devices in Failing Fontan. Di Molfetta A; Amodeo A; Fresiello L; Trivella MG; Iacobelli R; Pilati M; Ferrari G Artif Organs; 2015 Jul; 39(7):550-8. PubMed ID: 25808201 [TBL] [Abstract][Full Text] [Related]
9. Intraventricular flow patterns and stasis in the LVAD-assisted heart. Wong K; Samaroo G; Ling I; Dembitsky W; Adamson R; del Álamo JC; May-Newman K J Biomech; 2014 Apr; 47(6):1485-94. PubMed ID: 24612721 [TBL] [Abstract][Full Text] [Related]
10. Use of a Virtual Mock Loop model to evaluate a new left ventricular assist device for transapical insertion. Kado Y; Smith WA; Miyamoto T; Adams J; Polakowski AR; Dessoffy R; Horvath DJ; Fukamachi K; Karimov JH Int J Artif Organs; 2020 Oct; 43(10):677-683. PubMed ID: 32089074 [TBL] [Abstract][Full Text] [Related]
11. LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Gross C; Moscato F; Schlöglhofer T; Maw M; Meyns B; Marko C; Wiedemann D; Zimpfer D; Schima H; Fresiello L Artif Organs; 2020 Mar; 44(3):239-247. PubMed ID: 31519043 [TBL] [Abstract][Full Text] [Related]
12. In vitro testing of a left ventricular assist device. Study of the effect of its control strategy on energetic relationships inside the left ventricle. Ferrari G; Gorczynska K; De Lazzari C; Grodzicki K; Mimmo R; Ambrosi D; Tosti G Technol Health Care; 1996 Mar; 3(4):231-9. PubMed ID: 8705398 [TBL] [Abstract][Full Text] [Related]
13. Selective reduction of afterload in right heart assist therapy: a mock loop study†. Hsu PL; Hatam N; Unterkofler J; Goetzenich A; McIntyre M; Wong KC; Egger C; Schmitz-Rode T; Autschbach R; Steinseifer U Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):76-81. PubMed ID: 24670773 [TBL] [Abstract][Full Text] [Related]
14. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption. Drzewiecki GM; Pilla JJ; Welkowitz W IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137 [TBL] [Abstract][Full Text] [Related]
15. Cavoaortic shunt improves hemodynamics with preserved oxygen delivery in experimental right ventricular failure during left ventricular assist device therapy. Vikholm P; Schiller P; Johansson J; Hellgren L J Thorac Cardiovasc Surg; 2014 Feb; 147(2):625-31. PubMed ID: 23477692 [TBL] [Abstract][Full Text] [Related]
16. A fast building and effective hydraulic pediatric mock circulatory system for the evaluation of a left ventricular assist device. Huang F; Ruan X; Zou J; Qian W; Fu X ASAIO J; 2013; 59(6):575-85. PubMed ID: 24088901 [TBL] [Abstract][Full Text] [Related]
17. Study on in vitro performance verification protocol for left ventricular assist device. Li S; Hsu PL; Hao Y; Ren H Int J Artif Organs; 2020 Apr; 43(4):242-251. PubMed ID: 31680606 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo characterization of three different modes of pump operation when using a left ventricular assist device as a right ventricular assist device. Stevens MC; Gregory SD; Nestler F; Thomson B; Choudhary J; Garlick B; Pauls JP; Fraser JF; Timms D Artif Organs; 2014 Nov; 38(11):931-9. PubMed ID: 24660783 [TBL] [Abstract][Full Text] [Related]
19. Control of a Pediatric Pulsatile Ventricular Assist Device: A Hybrid Cardiovascular Model Study. Ferrari G; Di Molfetta A; Zieliński K; Fresiello L; Górczyńska K; Pałko KJ; Darowski M; Amodeo A; Kozarski M Artif Organs; 2017 Dec; 41(12):1099-1108. PubMed ID: 28621816 [TBL] [Abstract][Full Text] [Related]