These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7996581)

  • 1. Bioenergetic analysis of oxidative metabolism following traumatic brain injury in rats.
    Vink R; Golding EM; Headrick JP
    J Neurotrauma; 1994 Jun; 11(3):265-74. PubMed ID: 7996581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial metabolism following traumatic brain injury in rats.
    Vink R; Head VA; Rogers PJ; McIntosh TK; Faden AI
    J Neurotrauma; 1990; 7(1):21-7. PubMed ID: 2342116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy.
    Vink R; Faden AI; McIntosh TK
    J Neurotrauma; 1988; 5(4):315-30. PubMed ID: 3249310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: potential role in secondary injury.
    Headrick JP; Bendall MR; Faden AI; Vink R
    J Cereb Blood Flow Metab; 1994 Sep; 14(5):853-61. PubMed ID: 8063880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.
    Vink R; McIntosh TK; Weiner MW; Faden AI
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):563-71. PubMed ID: 3654796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and prolonged alterations in brain free magnesium following fluid percussion-induced brain trauma in rats.
    Vink R; Heath DL; McIntosh TK
    J Neurochem; 1996 Jun; 66(6):2477-83. PubMed ID: 8632172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome.
    Heath DL; Vink R
    J Neurotrauma; 1995 Dec; 12(6):1027-34. PubMed ID: 8742131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of competitive vs noncompetitive blockade of the NMDA channel following traumatic brain injury.
    Golding EM; Vink R
    Mol Chem Neuropathol; 1995; 24(2-3):137-50. PubMed ID: 7632318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate, not glucose, up-regulates mitochondrial oxygen consumption both in sham and lateral fluid percussed rat brains.
    Levasseur JE; Alessandri B; Reinert M; Clausen T; Zhou Z; Altememi N; Bullock MR
    Neurosurgery; 2006 Nov; 59(5):1122-30; discussion 1130-1. PubMed ID: 17143246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury.
    Opii WO; Nukala VN; Sultana R; Pandya JD; Day KM; Merchant ML; Klein JB; Sullivan PG; Butterfield DA
    J Neurotrauma; 2007 May; 24(5):772-89. PubMed ID: 17518533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral energy metabolism following fluid-percussion brain injury in cats.
    Unterberg AW; Andersen BJ; Clarke GD; Marmarou A
    J Neurosurg; 1988 Apr; 68(4):594-600. PubMed ID: 3351588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of acute ethanol intoxication on experimental brain injury in the rat: neurobehavioral and phosphorus-31 nuclear magnetic resonance spectroscopy studies.
    Yamakami I; Vink R; Faden AI; Gennarelli TA; Lenkinski R; McIntosh TK
    J Neurosurg; 1995 May; 82(5):813-21. PubMed ID: 7714607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR characterization of graded traumatic brain injury in rats.
    Vink R; McIntosh TK; Yamakami I; Faden AI
    Magn Reson Med; 1988 Jan; 6(1):37-48. PubMed ID: 3352504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of phospholipase C with neomycin improves metabolic and neurologic outcome following traumatic brain injury.
    Golding EM; Vink R
    Brain Res; 1994 Dec; 668(1-2):46-53. PubMed ID: 7704617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study.
    Bartnik BL; Lee SM; Hovda DA; Sutton RL
    J Neurotrauma; 2007 Jul; 24(7):1079-92. PubMed ID: 17610349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study.
    Garnett MR; Corkill RG; Blamire AM; Rajagopalan B; Manners DN; Young JD; Styles P; Cadoux-Hudson TA
    J Neurotrauma; 2001 Mar; 18(3):231-40. PubMed ID: 11284544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired cerebral mitochondrial function after traumatic brain injury in humans.
    Verweij BH; Muizelaar JP; Vinas FC; Peterson PL; Xiong Y; Lee CP
    J Neurosurg; 2000 Nov; 93(5):815-20. PubMed ID: 11059663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart.
    Taam GM; Takeo S; Ziegelhoffer A; Singal PK; Beamish RE; Dhalla NS
    Can J Cardiol; 1986; 2(2):88-93. PubMed ID: 3635424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.