These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7997052)

  • 21. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Picosecond optical breakdown: tissue effects and reduction of collateral damage.
    Zysset B; Fujimoto JG; Puliafito CA; Birngruber R; Deutsch TF
    Lasers Surg Med; 1989; 9(3):193-204. PubMed ID: 2659910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss.
    Holzhey A; Sonntag S; Rendenbach J; Ernesti JS; Kakkassery V; Grisanti S; Reinholz F; Freidank S; Vogel A; Ranjbar M
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass spectrometry analysis of the by-products of intrastromal photorefractive keratectomy.
    Habib MS; Speaker MG; Schnatter WF
    Ophthalmic Surg Lasers; 1995; 26(5):481-3. PubMed ID: 8963863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.
    Tinne N; Kaune B; Krüger A; Ripken T
    PLoS One; 2014; 9(12):e114437. PubMed ID: 25502697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation.
    Jansen ED; Asshauer T; Frenz M; Motamedi M; Delacrétaz G; Welch AJ
    Lasers Surg Med; 1996; 18(3):278-93. PubMed ID: 8778524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of ultrashort laser pulses for intrastromal refractive surgery.
    Lubatschowski H; Maatz G; Heisterkamp A; Hetzel U; Drommer W; Welling H; Ertmer W
    Graefes Arch Clin Exp Ophthalmol; 2000 Jan; 238(1):33-9. PubMed ID: 10664050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplification of high-intensity pressure waves and cavitation in water using a multi-pulsed laser excitation and black-TiOx optoacoustic lens.
    Tašič Muc B; Vella D; Lukač N; Kos M; Jezeršek M
    Biomed Opt Express; 2022 Jul; 13(7):3993-4006. PubMed ID: 35991925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.
    Ren XD; He H; Tong YQ; Ren YP; Yuan SQ; Liu R; Zuo CY; Wu K; Sui S; Wang DS
    Ultrason Sonochem; 2016 Sep; 32():218-223. PubMed ID: 27150764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-induced cavitation bubbles and shock waves in water near a concave surface.
    Požar T; Agrež V; Petkovšek R
    Ultrason Sonochem; 2021 May; 73():105456. PubMed ID: 33517094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C.
    Oraevsky AA; Jacques SL; Esenaliev RO; Tittel FK
    Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity.
    Krueger RR; Krasinski JS; Radzewicz C; Stonecipher KG; Rowsey JJ
    Cornea; 1993 Jul; 12(4):330-4. PubMed ID: 8339562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field.
    Sokolov DL; Bailey MR; Crum LA
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1685-95. PubMed ID: 11572377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrastromal photorefractive keratectomy with the Nd:YLF laser.
    Gimbel HV; Beldavs RA
    Int Ophthalmol Clin; 1994; 34(4):139-45. PubMed ID: 7896528
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.