These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7997834)

  • 1. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.
    Micheyl C; Collet L
    Scand Audiol; 1994; 23(3):171-8. PubMed ID: 7997834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves.
    Engler S; Gaudrain E; de Kleine E; van Dijk P
    J Acoust Soc Am; 2022 Feb; 151(2):1055. PubMed ID: 35232113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between otoacoustic emissions and performance in common psychoacoustical tasks.
    McFadden D; Pasanen EG; Maloney MM; Leshikar EM; Pho MH
    J Acoust Soc Am; 2018 Apr; 143(4):2355. PubMed ID: 29716248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of cochlear function in patients with tinnitus using spontaneous and transitory evoked otoacoustic emissions.
    Santaolalla Montoya F; Ibargüen AM; del Rey AS; Fernández JM
    J Otolaryngol; 2007 Oct; 36(5):296-302. PubMed ID: 17963669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity discrimination, temporal integration and gap detection by normally-hearing subjects with weak and strong otoacoustic emissions.
    Smurzynski J; Probst R
    Audiology; 1999; 38(5):251-6. PubMed ID: 10548371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous otoacoustic emissions in schoolchildren.
    Jedrzejczak WW; Kochanek K; Pilka E; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():67-71. PubMed ID: 27619031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
    Charaziak KK; Souza PE; Siegel JH
    Int J Audiol; 2015 Feb; 54(2):96-105. PubMed ID: 25290042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychoacoustic analyses of cochlear mechanisms in tinnitus patients with normal auditory thresholds.
    Buzo BC; Carvallo RM
    Int J Audiol; 2014 Jan; 53(1):40-7. PubMed ID: 24168288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans.
    Quaranta N; Scaringi A; Nahum S; Quaranta A
    Acta Otolaryngol; 2005 May; 125(5):520-3. PubMed ID: 16092544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Otoacoustic Emissions in
    Cheatham MA; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    eNeuro; 2018; 5(6):. PubMed ID: 30627650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared.
    McFadden D; Martin GK; Stagner BB; Maloney MM
    J Acoust Soc Am; 2009 Jan; 125(1):239-46. PubMed ID: 19173411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in otoacoustic emissions and high-frequency hearing thresholds in children and adolescents.
    Groh D; Pelanova J; Jilek M; Popelar J; Kabelka Z; Syka J
    Hear Res; 2006 Feb; 212(1-2):90-8. PubMed ID: 16364580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.