These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7997834)

  • 41. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs.
    Kakar K; Bhat JP; Thontadarya S
    J Int Adv Otol; 2021 Jul; 17(4):313-318. PubMed ID: 34309551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spontaneous otoacoustic emissions in heterosexuals, homosexuals, and bisexuals.
    McFadden D; Pasanen EG
    J Acoust Soc Am; 1999 Apr; 105(4):2403-13. PubMed ID: 10212421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transient-evoked otoacoustic emissions from ears with tympanostomy tubes.
    Fritsch MH; Wynne MK; Diefendorf AO
    Int J Pediatr Otorhinolaryngol; 2002 Oct; 66(1):29-36. PubMed ID: 12363419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Psychophysical tuning curves at very high frequencies.
    Yasin I; Plack CJ
    J Acoust Soc Am; 2005 Oct; 118(4):2498-506. PubMed ID: 16266170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Intra- and intersubject variability of acoustically evoked otoacoustic emissions. I. Transiently evoked otoacoustic emissions].
    Dieler R; Shehata-Dieler WE; Klagges T; Moser LM
    Laryngorhinootologie; 1999 Jun; 78(6):339-44. PubMed ID: 10439354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cochlear active mechanisms in young normal-hearing subjects affected by Williams syndrome: time-frequency analysis of otoacoustic emissions.
    Paglialonga A; Barozzi S; Brambilla D; Soi D; Cesarani A; Gagliardi C; Comiotto E; Spreafico E; Tognola G
    Hear Res; 2011 Feb; 272(1-2):157-67. PubMed ID: 20969939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of otoacoustic emissions on just-noticeable differences for intensity in normally hearing subjects.
    Probst R; Harris FP
    J Acoust Soc Am; 1996 Jul; 100(1):504-10. PubMed ID: 8675843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No otoacoustic evidence for a peripheral basis of absolute pitch.
    McKetton L; Purcell D; Stone V; Grahn J; Bergevin C
    Hear Res; 2018 Dec; 370():201-208. PubMed ID: 30190151
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold.
    Zettner EM; Folsom RC
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2031-41. PubMed ID: 12703714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transiently evoked otoacoustic emissions in patients with cerebellopontine angle tumors.
    Cane MA; Lutman ME; O'Donoghue GM
    Am J Otol; 1994 Mar; 15(2):207-16. PubMed ID: 8172303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alterations in Evoked Otoacoustic Emissions by the Use of Meglumine Antimoniate in American Tegumentary Leishmaniasis Patients.
    Oliveira Bezerra DC; Oliveira de Barcelos R; Carvalho de Castro E; Jardim Duarte CC; de Vasconcellos Carvalhaes Oliveira R; Salgado de Sousa Torraca T; de Araújo-Melo MH; Pereira Bom Braga F; Ramos Ferreira Terceiro B; do Nascimento Brahim Paes LR; de Oliveira Schubach A; Valete-Rosalino CM
    PLoS One; 2017; 12(1):e0168492. PubMed ID: 28045920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans.
    Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of aging on otoacoustic emissions.
    Stover L; Norton SJ
    J Acoust Soc Am; 1993 Nov; 94(5):2670-81. PubMed ID: 8270743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distortion-product otoacoustic emissions measured at high frequencies in humans.
    Dreisbach LE; Siegel JH
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2456-69. PubMed ID: 11757935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.