These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7998532)

  • 1. Combined effects of magnetization transfer and gadolinium in cranial MR imaging and MR angiography.
    Mathews VP; Elster AD; King JC; Ulmer JL; Hamilton CA; Strottmann JM
    AJR Am J Roentgenol; 1995 Jan; 164(1):169-72. PubMed ID: 7998532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved detection of gadolinium enhancement using magnetization transfer imaging.
    Elster AD; Mathews VP; King JC; Hamilton CA
    Neuroimaging Clin N Am; 1994 Feb; 4(1):185-92. PubMed ID: 8130949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetization transfer magnetic resonance imaging: a clinical review.
    Mehta RC; Pike GB; Enzmann DR
    Top Magn Reson Imaging; 1996 Aug; 8(4):214-30. PubMed ID: 8870180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Half-dose gadolinium-enhanced MR imaging with magnetization transfer technique in brain tumors: comparison with conventional contrast-enhanced MR imaging.
    Han D; Chang KH; Han MH; Cho JY; Han SW; Kim HD; Seong SO
    AJR Am J Roentgenol; 1998 Jan; 170(1):189-93. PubMed ID: 9423630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR.
    Garcia M; Gloor M; Radue EW; Stippich Ch; Wetzel SG; Scheffler K; Bieri O
    Neuroimage; 2012 Jan; 59(1):202-11. PubMed ID: 21820061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetization transfer in magnetic resonance imaging.
    Thomas JD
    Radiol Technol; 1996; 67(4):297-306. PubMed ID: 8778909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value of magnetization transfer contrast in intracranial enhancing and nonenhancing lesions with paramagnetic contrast agents.
    Hamatake S; Korogi Y; Sakamoto Y; Ikushima I; Hirai T; Takahashi M
    Radiat Med; 1997; 15(5):295-303. PubMed ID: 9445151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses.
    Helms G; Piringer A
    NMR Biomed; 2005 Feb; 18(1):44-50. PubMed ID: 15455467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast agents: magnetic resonance.
    Burtea C; Laurent S; Vander Elst L; Muller RN
    Handb Exp Pharmacol; 2008; (185 Pt 1):135-65. PubMed ID: 18626802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetization transfer contrast in magnetic resonance imaging.
    Balaban RS; Ceckler TL
    Magn Reson Q; 1992 Jun; 8(2):116-37. PubMed ID: 1622774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Basic principles of MR angiography. An introduction].
    Laub G
    Radiologe; 1994 Aug; 34(8):416-22. PubMed ID: 7972718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative magnetization transfer by trains of radio frequency pulses in human brain: extension of a free evolution model to continuous-wave-like conditions.
    Helms G; Piringer A
    Magn Reson Imaging; 2005 Jul; 23(6):723-31. PubMed ID: 16198827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
    Barkhof F; van Walderveen M
    Philos Trans R Soc Lond B Biol Sci; 1999 Oct; 354(1390):1675-86. PubMed ID: 10603619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable density magnetization transfer (vdMT) imaging for 7T MR imaging.
    Oh SH; Shin W; Lee J; Lowe MJ
    Neuroimage; 2018 Mar; 168():242-249. PubMed ID: 27633800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain.
    Melhem ER; Bert RJ; Walker RE
    AJR Am J Roentgenol; 1998 Sep; 171(3):803-7. PubMed ID: 9725320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional contrast-enhanced MR angiography.
    Maki JH; Chenevert TL; Prince MR
    Top Magn Reson Imaging; 1996 Dec; 8(6):322-44. PubMed ID: 9402676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification strategies in MR imaging: activation and accumulation of sensing contrast agents (SCAs).
    Querol M; Bogdanov A
    J Magn Reson Imaging; 2006 Nov; 24(5):971-82. PubMed ID: 17024658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of magnetization transfer contrast and fluid attenuated inversion recovery sequences in brain tuberculoma.
    Saxena S; Prakash M; Kumar S; Gupta RK
    Clin Radiol; 2005 Jul; 60(7):787-93. PubMed ID: 15978890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.