These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7998682)

  • 1. Instantaneous back flow through peripheral clearance of Medtronic Hall tilting disc valve at the moment of closure.
    Lee CS; Chandran KB
    Ann Biomed Eng; 1994; 22(4):371-80. PubMed ID: 7998682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of mechanical mitral heart valve closure.
    Aluri S; Chandran KB
    Ann Biomed Eng; 2001 Aug; 29(8):665-76. PubMed ID: 11556723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect.
    Lee CS; Chandran KB; Chen LD
    J Biomech Eng; 1996 Feb; 118(1):97-105. PubMed ID: 8833080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of instantaneous backflow through central clearance of bileaflet mechanical heart valves at closure: shear stress and pressure fields within clearance.
    Lee CS; Chandran KB
    Med Biol Eng Comput; 1995 May; 33(3):257-63. PubMed ID: 7475360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can vortices in the flow across mechanical heart valves contribute to cavitation?
    Avrahami I; Rosenfeld M; Einav S; Eichler M; Reul H
    Med Biol Eng Comput; 2000 Jan; 38(1):93-7. PubMed ID: 10829397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    Ann Biomed Eng; 2004 Nov; 32(11):1471-83. PubMed ID: 15636108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase: effect of squeeze film.
    Gill-Jeong C; Chandran KB
    Ann Biomed Eng; 1995; 23(2):189-97. PubMed ID: 7605055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient behavior analysis of a mechanical monoleaflet heart valve prosthesis in the closing phase.
    Cheon GJ; Chandran KB
    J Biomech Eng; 1994 Nov; 116(4):452-9. PubMed ID: 7869721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The closing behavior of Medtronic Hall mechanical heart valves.
    Wu ZJ; Shu MC; Scott DR; Hwang NH
    ASAIO J; 1994; 40(3):M702-6. PubMed ID: 8555605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation dynamics of mechanical heart valve prostheses.
    Lee CS; Chandran KB; Chen LD
    Artif Organs; 1994 Oct; 18(10):758-67. PubMed ID: 7832658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.