BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7998689)

  • 1. Evaluating rescaled ranged analysis for time series.
    Bassingthwaighte JB; Raymond GM
    Ann Biomed Eng; 1994; 22(4):432-44. PubMed ID: 7998689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the dispersional analysis method for fractal time series.
    Bassingthwaighte JB; Raymond GM
    Ann Biomed Eng; 1995; 23(4):491-505. PubMed ID: 7486356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological time series: distinguishing fractal noises from motions.
    Eke A; Hermán P; Bassingthwaighte JB; Raymond GM; Percival DB; Cannon M; Balla I; Ikrényi C
    Pflugers Arch; 2000 Feb; 439(4):403-15. PubMed ID: 10678736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods.
    Caccia DC; Percival D; Cannon MJ; Raymond G; Bassingthwaighte JB
    Physica A; 1997 Dec; 246(3-4):609-632. PubMed ID: 22049251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise.
    Raymond GM; Bassingthwaighte JB
    Physica A; 1999 Mar; 265(1-2):85-96. PubMed ID: 23077376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series.
    Cannon MJ; Percival DB; Caccia DC; Raymond GM; Bassingthwaighte JB
    Physica A; 1997 Jul; 241(3-4):606-626. PubMed ID: 22049250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the Hurst exponent of fractal time series and its application to electrocardiographic analysis.
    DePetrillo PB; Speers D; Ruttimann UE
    Comput Biol Med; 1999 Nov; 29(6):393-406. PubMed ID: 10591173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions.
    Liu JL; Yu ZG; Anh V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032814. PubMed ID: 24730906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships of exponents in two-dimensional multifractal detrended fluctuation analysis.
    Zhou Y; Leung Y; Yu ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012921. PubMed ID: 23410418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of analytical methods for the study of fractional Brownian motion.
    Fischer R; Akay M
    Ann Biomed Eng; 1996; 24(4):537-43. PubMed ID: 8841727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient method.
    Zhang Z; VanSwearingen J; Brach JS; Perera S; Sejdić E
    Comput Biol Med; 2017 Jan; 80():175-184. PubMed ID: 27960102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractal analysis of the uterine contractions.
    Oczeretko E; Kitlas A; Swiatecka J; Laudański T
    Riv Biol; 2004; 97(3):499-504. PubMed ID: 15754597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance and reliability of wavelet denoising for Doppler ultrasound fetal heart rate signal preprocessing.
    Papadimitriou S; Papadopoulos V; Gatzounas D; Tzigounis V; Bezerianos A
    Stud Health Technol Inform; 1997; 43 Pt B():561-5. PubMed ID: 10179728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.
    Schaefer A; Brach JS; Perera S; Sejdić E
    J Neurosci Methods; 2014 Jan; 222():118-30. PubMed ID: 24200509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A blind method for the estimation of the Hurst exponent in time series: theory and application.
    Esposti F; Ferrario M; Signorini MG
    Chaos; 2008 Sep; 18(3):033126. PubMed ID: 19045464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis.
    Ma QD; Bartsch RP; Bernaola-Galván P; Yoneyama M; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031101. PubMed ID: 20365691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating long-range dependence in time series: an evaluation of estimators implemented in R.
    Stroe-Kunold E; Stadnytska T; Werner J; Braun S
    Behav Res Methods; 2009 Aug; 41(3):909-23. PubMed ID: 19587208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors.
    Fadili MJ; Bullmore ET
    Neuroimage; 2002 Jan; 15(1):217-32. PubMed ID: 11771991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing fractal dynamics employing R.
    Stadnytska T; Braun S; Werner J
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):117-44. PubMed ID: 20346258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.