These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. Stauderman KA; Pruss RM J Biol Chem; 1989 Nov; 264(31):18349-55. PubMed ID: 2509455 [TBL] [Abstract][Full Text] [Related]
3. Characterization of prostaglandin E2-induced Ca2+ mobilization in single bovine adrenal chromaffin cells by digital image microscopy. Ito S; Mochizuki-Oda N; Hori K; Ozaki K; Miyakawa A; Negishi M J Neurochem; 1991 Feb; 56(2):531-40. PubMed ID: 1671085 [TBL] [Abstract][Full Text] [Related]
4. The role of caffeine-sensitive Ca2+ stores in agonist- and inositol 1,4,5-trisphosphate-induced Ca2+ release from bovine adrenal chromaffin cells. Stauderman KA; McKinney RA; Murawsky MM Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):643-50. PubMed ID: 1898353 [TBL] [Abstract][Full Text] [Related]
5. Histamine causes Ca2+ entry via both a store-operated and a store-independent pathway in bovine adrenal chromaffin cells. Zerbes M; Bunn SJ; Powis DA Cell Calcium; 1998 Jun; 23(6):379-86. PubMed ID: 9924629 [TBL] [Abstract][Full Text] [Related]
6. Caffeine-sensitive calcium stores in bovine adrenal chromaffin cells. Liu PS; Lin YJ; Kao LS J Neurochem; 1991 Jan; 56(1):172-7. PubMed ID: 1898965 [TBL] [Abstract][Full Text] [Related]
7. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores. Zerbes M; Clark CL; Powis DA Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355 [TBL] [Abstract][Full Text] [Related]
8. Permeation and inactivation by calcium and manganese of bovine adrenal chromaffin cell calcium channels. Fonteriz RI; Garcia-Sancho J; Gandia L; Lopez MG; Garcia AG Am J Physiol; 1992 Oct; 263(4 Pt 1):C818-24. PubMed ID: 1329546 [TBL] [Abstract][Full Text] [Related]
9. Dotarizine versus flunarizine as calcium antagonists in chromaffin cells. Villarroya M; Gandía L; Lara B; Albillos A; López MG; García AG Br J Pharmacol; 1995 Jan; 114(2):369-76. PubMed ID: 7881736 [TBL] [Abstract][Full Text] [Related]
10. Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. Sasakawa N; Nakaki T; Yamamoto S; Kato R J Neurochem; 1989 Feb; 52(2):441-7. PubMed ID: 2783453 [TBL] [Abstract][Full Text] [Related]
11. Histamine-evoked chromaffin cell scinderin redistribution, F-actin disassembly, and secretion: in the absence of cortical F-actin disassembly, an increase in intracellular Ca2+ fails to trigger exocytosis. Zhang L; Rodríguez Del Castillo A; Trifaró JM J Neurochem; 1995 Sep; 65(3):1297-308. PubMed ID: 7643107 [TBL] [Abstract][Full Text] [Related]
12. Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. van der Zee L; Nelemans A; den Hertog A Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):859-64. PubMed ID: 7848286 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effects of caffeine on secretagogue-induced catecholamine secretion from adrenal chromaffin cells of the guinea-pig. Nakazato Y; Tani Y; Teraoka H; Sugawara T; Asano T; Ohta T; Ito S Br J Pharmacol; 1994 Mar; 111(3):935-41. PubMed ID: 8019771 [TBL] [Abstract][Full Text] [Related]
14. Single-cell fura-2 microfluorometry reveals different purinoceptor subtypes coupled to Ca2+ influx and intracellular Ca2+ release in bovine adrenal chromaffin and endothelial cells. Castro E; Tomé AR; Miras-Portugal MT; Rosário LM Pflugers Arch; 1994 Apr; 426(6):524-33. PubMed ID: 8052522 [TBL] [Abstract][Full Text] [Related]
15. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. Eberhard DA; Holz RW J Neurochem; 1987 Nov; 49(5):1634-43. PubMed ID: 3668543 [TBL] [Abstract][Full Text] [Related]
16. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells. Williams MR; Riach RA; Collison DJ; Duncan G Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079 [TBL] [Abstract][Full Text] [Related]
17. Bovine adrenal chromaffin cells contain an inositol 1,4,5-trisphosphate-insensitive but caffeine-sensitive Ca2+ store that can be regulated by intraluminal free Ca2+. Cheek TR; Barry VA; Berridge MJ; Missiaen L Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):697-701. PubMed ID: 1645520 [TBL] [Abstract][Full Text] [Related]
18. Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Cheek TR; Berridge MJ; Moreton RB; Stauderman KA; Murawsky MM; Bootman MD Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):879-83. PubMed ID: 8053911 [TBL] [Abstract][Full Text] [Related]
19. Voltage-dependent, pertussis toxin insensitive inhibition of calcium currents by histamine in bovine adrenal chromaffin cells. Currie KP; Fox AP J Neurophysiol; 2000 Mar; 83(3):1435-42. PubMed ID: 10712470 [TBL] [Abstract][Full Text] [Related]
20. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: comparison of the effects of histamine and angiotensin II. Stauderman KA; Pruss RM J Neurochem; 1990 Mar; 54(3):946-53. PubMed ID: 2303821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]