These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 7999000)
1. Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper. Carpenter KL; Wilkins GM; Fussell B; Ballantine JA; Taylor SE; Mitchinson MJ; Leake DS Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):625-33. PubMed ID: 7999000 [TBL] [Abstract][Full Text] [Related]
2. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. Wang T; Yu WG; Powell WS J Lipid Res; 1992 Apr; 33(4):525-37. PubMed ID: 1527476 [TBL] [Abstract][Full Text] [Related]
3. Glutathione (GSH) and the toxicity of oxidised low-density lipoprotein to human monocyte-macrophages. Hardwick SJ; Carpenter KL; Allen EA; Mitchinson MJ Free Radic Res; 1999 Jan; 30(1):11-9. PubMed ID: 10193569 [TBL] [Abstract][Full Text] [Related]
4. Time course of oxysterol formation during in vitro oxidation of low density lipoprotein. Dzeletovic S; Babiker A; Lund E; Diczfalusy U Chem Phys Lipids; 1995 Nov; 78(2):119-28. PubMed ID: 8565112 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting events during oxidation of low density lipoprotein: correlation of multiple parameters of oxidation. van der Veen C; Carpenter KL; Taylor SE; McDonald JA; Mitchinson MJ Free Radic Res; 1997 Nov; 27(5):459-76. PubMed ID: 9518063 [TBL] [Abstract][Full Text] [Related]
6. Oxidative modification of low-density lipoprotein by human polymorphonuclear leucocytes to a form recognised by the lipoprotein scavenger pathway. Katsura M; Forster LA; Ferns GA; Anggård EE Biochim Biophys Acta; 1994 Jul; 1213(2):231-7. PubMed ID: 8025135 [TBL] [Abstract][Full Text] [Related]
7. Capillary gas chromatography quantification of cholesterol in copper-oxidized low-density lipoprotein. Tanaka M; Kanamaru S Biol Pharm Bull; 1993 Jun; 16(6):538-43. PubMed ID: 8364505 [TBL] [Abstract][Full Text] [Related]
8. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. Brown AJ; Dean RT; Jessup W J Lipid Res; 1996 Feb; 37(2):320-35. PubMed ID: 9026530 [TBL] [Abstract][Full Text] [Related]
9. Cell-mediated oxidation of LDL: comparison of different cell types of the atherosclerotic lesion. Müller K; Carpenter KL; Mitchinson MJ Free Radic Res; 1998 Sep; 29(3):207-20. PubMed ID: 9802552 [TBL] [Abstract][Full Text] [Related]
10. The oxysterols cholest-5-ene-3 beta,4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques. Breuer O; Dzeletovic S; Lund E; Diczfalusy U Biochim Biophys Acta; 1996 Jul; 1302(2):145-52. PubMed ID: 8695664 [TBL] [Abstract][Full Text] [Related]
11. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher UP; Lougheed M; Kwan WC; Dirks M J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257 [TBL] [Abstract][Full Text] [Related]
12. The effect of EDTA on the oxidation of low density lipoprotein. Lamb DJ; Leake DS Atherosclerosis; 1992 May; 94(1):35-42. PubMed ID: 1632857 [TBL] [Abstract][Full Text] [Related]
13. Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by *OH/O2*- free radicals or by copper. Zarev S; Thérond P; Bonnefont-Rousselot D; Beaudeux JL; Gardès-Albert M; Legrand A FEBS Lett; 1999 May; 451(2):103-8. PubMed ID: 10371147 [TBL] [Abstract][Full Text] [Related]
14. Differing effects of probucol and vitamin E on the oxidation of lipoproteins, ceroid accumulation and protein uptake by macrophages. Hunt JV; Bottoms MA; Taylor SE; Lyell V; Mitchinson MJ Free Radic Res; 1994 Mar; 20(3):189-201. PubMed ID: 8019642 [TBL] [Abstract][Full Text] [Related]
15. Macrophage oxidative modification of low density lipoprotein occurs independently of its binding to the low density lipoprotein receptor. Tangirala RK; Mol MJ; Steinberg D J Lipid Res; 1996 Apr; 37(4):835-43. PubMed ID: 8732783 [TBL] [Abstract][Full Text] [Related]
16. Endogenously produced lipoprotein lipase enhances the binding and cell association of native, mildly oxidized and moderately oxidized low-density lipoprotein in mouse peritoneal macrophages. Wang X; Greilberger J; Levak-Frank S; Zimmermann R; Zechner R; Jürgens G Biochem J; 1999 Oct; 343 Pt 2(Pt 2):347-53. PubMed ID: 10510299 [TBL] [Abstract][Full Text] [Related]
17. Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. Aviram M J Biol Chem; 1992 Jan; 267(1):218-25. PubMed ID: 1730591 [TBL] [Abstract][Full Text] [Related]
18. The susceptibility of low-density lipoprotein to in vitro oxidation is increased in hypercholesterolemic patients. Cominacini L; Pastorino AM; Garbin U; Campagnola M; de Santis A; Davoli A; Faccini G; Bertozzo L; Pasini F; Pasini AF Nutrition; 1994; 10(6):527-31. PubMed ID: 7703599 [TBL] [Abstract][Full Text] [Related]
19. Alpha-tocopherol supplementation of macrophages does not influence their ability to oxidize LDL. Baoutina A; Dean RT; Jessup W J Lipid Res; 1998 Jan; 39(1):114-30. PubMed ID: 9469591 [TBL] [Abstract][Full Text] [Related]
20. Oxysterol-induced activation of macrophage NADPH-oxidase enhances cell-mediated oxidation of LDL in the atherosclerotic apolipoprotein E deficient mouse: inhibitory role for vitamin E. Rosenblat M; Aviram M Atherosclerosis; 2002 Jan; 160(1):69-80. PubMed ID: 11755924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]