These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7999034)
1. Aminoethylcysteine ketimine decarboxylated dimer protects submitochondrial particles from lipid peroxidation at a concentration not inhibitory of electron transport. Pecci L; Fontana M; Montefoschi G; Cavallini D Biochem Biophys Res Commun; 1994 Nov; 205(1):264-8. PubMed ID: 7999034 [TBL] [Abstract][Full Text] [Related]
2. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level. Pecci L; Montefoschi G; Fontana M; Cavallini D Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant properties of the decarboxylated dimer of aminoethylcysteine ketimine. Pecci L; Montefoschi G; Antonucci A; Cavallini D Physiol Chem Phys Med NMR; 1995; 27(3):223-9. PubMed ID: 8868582 [TBL] [Abstract][Full Text] [Related]
5. [Superoxide formation and lipid peroxidation by the mitochondrial electron-transfer chain]. Takeshige K Rinsho Shinkeigaku; 1994 Dec; 34(12):1269-71. PubMed ID: 7774132 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Yamada K; Fukushima T Exp Toxicol Pathol; 1993 Oct; 45(5-6):375-80. PubMed ID: 8312726 [TBL] [Abstract][Full Text] [Related]
7. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+. Ramsay RR; Singer TP Biochem Biophys Res Commun; 1992 Nov; 189(1):47-52. PubMed ID: 1333196 [TBL] [Abstract][Full Text] [Related]
8. The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Ernster L; Forsmark P; Nordenbrand K Biofactors; 1992 Apr; 3(4):241-8. PubMed ID: 1605833 [TBL] [Abstract][Full Text] [Related]
9. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
10. Formation of keto and hydroxy compounds of linoleic acid in submitochondrial particles of bovine heart. Iwase H; Takatori T; Nagao M; Nijima H; Iwadate K; Matsuda Y; Kobayashi M Free Radic Biol Med; 1998 Jun; 24(9):1492-503. PubMed ID: 9641268 [TBL] [Abstract][Full Text] [Related]
11. The effect of the neuroblastoma-seeking agent meta-iodobenzylguanidine (MIBG) on NADH-driven superoxide formation and NADH-driven lipid peroxidation in beef heart submitochondrial particles. Cornelissen J; Van Kuilenburg AB; Voƻte PA; Van Gennip AH Eur J Cancer; 1997 Mar; 33(3):421-4. PubMed ID: 9155526 [TBL] [Abstract][Full Text] [Related]
12. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol. Takayanagi R; Takeshige K; Minakami S Biochem J; 1980 Dec; 192(3):853-60. PubMed ID: 7236242 [TBL] [Abstract][Full Text] [Related]
13. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888 [TBL] [Abstract][Full Text] [Related]
14. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles. van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788 [TBL] [Abstract][Full Text] [Related]
15. Mode of inhibitory action of Deltalac-acetogenins, a new class of inhibitors of bovine heart mitochondrial complex I. Murai M; Ichimaru N; Abe M; Nishioka T; Miyoshi H Biochemistry; 2006 Aug; 45(32):9778-87. PubMed ID: 16893179 [TBL] [Abstract][Full Text] [Related]
16. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles. Pryor WA; Arbour NC; Upham B; Church DF Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of complex I by Ca2+ reduces electron transport activity and the rate of superoxide anion production in cardiac submitochondrial particles. Matsuzaki S; Szweda LI Biochemistry; 2007 Feb; 46(5):1350-7. PubMed ID: 17260964 [TBL] [Abstract][Full Text] [Related]
18. [Inhibition of H2O2 and O2-. generation in the respiratory chain, treated with 2,3-dimercaptopropanol]. Ksenzenko MIu; Konstantinov AA; Tikhonov AN; Ruuge EK Biokhimiia; 1982 Sep; 47(9):1577-9. PubMed ID: 6291643 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of lipid peroxidation by alpha-tocopherolquinone and alpha-tocopherolhydroquinone. Bindoli A; Valente M; Cavallini L Biochem Int; 1985 May; 10(5):753-61. PubMed ID: 4015671 [TBL] [Abstract][Full Text] [Related]
20. A dual effect of 1-methyl-4-phenylpyridinium (MPP+)-analogs on the respiratory chain of bovine heart mitochondria. Hasegawa E; Kang D; Sakamoto K; Mitsumoto A; Nagano T; Minakami S; Takeshige K Arch Biochem Biophys; 1997 Jan; 337(1):69-74. PubMed ID: 9395404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]