BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7999750)

  • 1. Supramolecular self-assembly of Escherichia coli glutamine synthetase: characterization of dodecamer stacking and high order association.
    Yanchunas J; Dabrowski MJ; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14949-56. PubMed ID: 7999750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular self-assembly of Escherichia coli glutamine synthetase: effects of pressure and adenylylation state on dodecamer stacking.
    Atkins WM
    Biochemistry; 1994 Dec; 33(50):14965-73. PubMed ID: 7999752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of supramolecular protein aggregates: self-assembled, molecularly-ordered, tubes from electrostatic complementation of glutamine synthetase dodecamers.
    Chen JP; Dabrowski MJ; Atkins WM
    Protein Eng; 1997 Nov; 10(11):1289-94. PubMed ID: 9514117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular self-assembly of glutamine synthetase: mutagenesis of a novel intermolecular metal binding site required for dodecamer stacking.
    Dabrowski MJ; Yanchunas J; Villafranca BC; Dietze EC; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14957-64. PubMed ID: 7999751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the aggregation properties of dodecameric glutamine synthetase: a single amino acid substitution controls 'salting out'.
    Dabrowski MJ; Dietze EC; Atkins WM
    Protein Eng; 1996 Mar; 9(3):291-8. PubMed ID: 8736496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites.
    Schurke P; Freeman JC; Dabrowski MJ; Atkins WM
    J Biol Chem; 1999 Sep; 274(39):27963-8. PubMed ID: 10488145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial unfolding of dodecameric glutamine synthetase from Escherichia coli: temperature-induced, reversible transitions of two domains.
    Shrake A; Fisher MT; McFarland PJ; Ginsburg A
    Biochemistry; 1989 Jul; 28(15):6281-94. PubMed ID: 2571357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP.
    Fisher MT
    Biochemistry; 1992 Apr; 31(16):3955-63. PubMed ID: 1348957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli.
    Ginsburg A; Zolkiewski M
    Biochemistry; 1991 Oct; 30(39):9421-9. PubMed ID: 1680002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation-specific monoclonal antibodies to glutamine synthetase in Escherichia coli.
    Chung HK; Park SC; Rhee SG
    J Biol Chem; 1984 Oct; 259(19):11756-62. PubMed ID: 6148342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urea-induced dissociation and unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric and spectral studies.
    Zolkiewski M; Nosworthy NJ; Ginsburg A
    Protein Sci; 1995 Aug; 4(8):1544-52. PubMed ID: 8520480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for protein-based nanofabrication: Ni2+-NTA as a chemical mask to control biologically imposed symmetry.
    Dabrowski MJ; Chen JP; Shi H; Chin WC; Atkins WM
    Chem Biol; 1998 Dec; 5(12):689-97. PubMed ID: 9862795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal unfolding of dodecameric glutamine synthetase: inhibition of aggregation by urea.
    Nosworthy NJ; Ginsburg A
    Protein Sci; 1997 Dec; 6(12):2617-23. PubMed ID: 9416610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bovine retinal glutamine synthetase 2. Regulation and properties on the basis of glutamine synthetase and glutamyl transferase reactions.
    Pahuja SL; Reid TW
    Exp Eye Res; 1985 Jan; 40(1):75-83. PubMed ID: 2858400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the helical filament formation of Escherichia coli glutamine synthetase.
    Huang PC; Chen SK; Chiang WH; Ho MR; Wu KP
    Protein Sci; 2022 May; 31(5):e4304. PubMed ID: 35481643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Cibacron Blue F3GA with glutamine synthetase: use of the dye as a conformational probe. 1. Studies using unfractionated dye samples.
    Federici MM; Chock PB; Stadtman ER
    Biochemistry; 1985 Jan; 24(3):647-60. PubMed ID: 2859880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.