These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 8000877)
1. Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxidases and benzoquinone. Implications for the mechanism of action of aureolic acid antibiotics. Anyanwutaku IO; Petroski RJ; Rosazza JP Bioorg Med Chem; 1994 Jun; 2(6):543-51. PubMed ID: 8000877 [TBL] [Abstract][Full Text] [Related]
2. Expanding the Chemical Diversity of the Antitumoral Compound Mithramycin by Combinatorial Biosynthesis and Biocatalysis: The Quest for Mithralogs with Improved Therapeutic Window. Méndez C; González-Sabín J; Morís F; Salas JA Planta Med; 2015 Oct; 81(15):1326-38. PubMed ID: 26393942 [TBL] [Abstract][Full Text] [Related]
3. Laccase-catalyzed domino reactions between hydroquinones and cyclic 1,3-dicarbonyls for the regioselective synthesis of substituted p-benzoquinones. Hajdok S; Conrad J; Beifuss U J Org Chem; 2012 Jan; 77(1):445-59. PubMed ID: 22117114 [TBL] [Abstract][Full Text] [Related]
4. UCH9, a new antitumor antibiotic produced by Streptomyces. II. Structure elucidation of UCH9 by mass and NMR spectroscopy. Katahira R; Uosaki Y; Ogawa H; Yamashita Y; Nakano H; Yoshida M J Antibiot (Tokyo); 1998 Mar; 51(3):267-74. PubMed ID: 9589061 [TBL] [Abstract][Full Text] [Related]
5. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Mikolasch A; Matthies A; Lalk M; Schauer F Appl Microbiol Biotechnol; 2008 Sep; 80(3):389-97. PubMed ID: 18668239 [TBL] [Abstract][Full Text] [Related]
6. [Action of aureolic acid and dactinomycin group antibiotics on human brain tumors in culture]. Radzievskaia VV; Terent'eva TG; Sokolov AB Antibiotiki; 1978 Feb; 23(2):103-9. PubMed ID: 204247 [TBL] [Abstract][Full Text] [Related]
7. Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents. Blanco G; Fu H; Mendez C; Khosla C; Salas JA Chem Biol; 1996 Mar; 3(3):193-6. PubMed ID: 8807845 [TBL] [Abstract][Full Text] [Related]
8. Novel oxidations of (+)-catechin by horseradish peroxidase and laccase. Hosny M; Rosazza JP J Agric Food Chem; 2002 Sep; 50(20):5539-45. PubMed ID: 12236676 [TBL] [Abstract][Full Text] [Related]
9. The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives. Lombó F; Menéndez N; Salas JA; Méndez C Appl Microbiol Biotechnol; 2006 Nov; 73(1):1-14. PubMed ID: 17013601 [TBL] [Abstract][Full Text] [Related]
10. Two novel C-glycosides of aureolic acid repress transcription of the MDR1 gene. Tagashira M; Kitagawa T; Nozato N; Isonishi S; Okamoto A; Ochiai K; Ohtake Y Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):575-8. PubMed ID: 10783084 [TBL] [Abstract][Full Text] [Related]
12. Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. Prado L; Fernández E; Weissbach U; Blanco G; Quirós LM; Braña AF; Méndez C; Rohr J; Salas JA Chem Biol; 1999 Jan; 6(1):19-30. PubMed ID: 9889148 [TBL] [Abstract][Full Text] [Related]
13. Aureolic acids: similar antibiotics with different biosynthetic gene clusters. O'Connor S Chem Biol; 2004 Jan; 11(1):8-10. PubMed ID: 15112986 [TBL] [Abstract][Full Text] [Related]
14. Photochemistry of methoxyhydroquinone and methoxy-p-benzoquinone in solution related to the photoyellowing of the lignocellulosics. Béarnais-Barbry S; Bonneau R; Castellan A Photochem Photobiol; 2001 Oct; 74(4):542-8. PubMed ID: 11683033 [TBL] [Abstract][Full Text] [Related]
15. Association of antitumor antibiotics, mithramycin and chromomycin, with Zn(II). Devi PG; Pal S; Banerjee R; Dasgupta D J Inorg Biochem; 2007 Jan; 101(1):127-37. PubMed ID: 17070920 [TBL] [Abstract][Full Text] [Related]
16. Multiple functions of generic drugs: future perspectives of aureolic acid group of anti-cancer antibiotics and non-steroidal anti-inflammatory drugs. Chakraborty H; Devi PG; Sarkar M; Dasgupta D Mini Rev Med Chem; 2008 Apr; 8(4):331-49. PubMed ID: 18473925 [TBL] [Abstract][Full Text] [Related]
17. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. Remsing LL; González AM; Nur-e-Alam M; Fernández-Lozano MJ; Braña AF; Rix U; Oliveira MA; Méndez C; Salas JA; Rohr J J Am Chem Soc; 2003 May; 125(19):5745-53. PubMed ID: 12733914 [TBL] [Abstract][Full Text] [Related]
18. Microbial transformation of azacarbazoles. VI. Conversion of 6-hydroxy- and 6-amino-alpha-carbolines with copper oxidases. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):125-8. PubMed ID: 3447528 [TBL] [Abstract][Full Text] [Related]
19. Oxidative Coupling of Hydroquinone Derivatives with Olefins to Dihydrobenzofurans. Sawama Y; Nakajima K; Aijima T; Mae M; Komagawa S; Nakata H; Sajiki H; Akai S Chem Pharm Bull (Tokyo); 2024; 72(6):566-569. PubMed ID: 38897954 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and biological evaluation of quinocarcin derivatives: thioalkyl-substituted quinones and hydroquinones. Saito H; Hirata T; Kasai M; Fujimoto K; Ashizawa T; Morimoto M; Sato A J Med Chem; 1991 Jul; 34(7):1959-66. PubMed ID: 2066968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]