BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1401 related articles for article (PubMed ID: 8001456)

  • 1. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid FISH technique for quantitative microscopy.
    Haar FM; Durm M; Aldinger K; Celeda D; Hausmann M; Ludwig H; Cremer C
    Biotechniques; 1994 Aug; 17(2):346-8, 350-3. PubMed ID: 7980939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of inter- and intra-nuclear variation of fluorescence in situ hybridization signals.
    Nederlof PM; van der Flier S; Raap AK; Tanke HJ
    Cytometry; 1992; 13(8):831-8. PubMed ID: 1459000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of fluorescence in situ hybridization signals by image cytometry.
    Nederlof PM; van der Flier S; Verwoerd NP; Vrolijk J; Raap AK; Tanke HJ
    Cytometry; 1992; 13(8):846-52. PubMed ID: 1459002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy.
    Nederlof PM; van der Flier S; Vrolijk J; Tanke HJ; Raap AK
    Cytometry; 1992; 13(8):839-45. PubMed ID: 1459001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics.
    Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB
    J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation and mapping of integrated human papillomavirus on human metaphase chromosomes using a fluorescence microscope imaging system.
    Callahan DE; Karim A; Zheng G; Tso PO; Lesko SA
    Cytometry; 1992; 13(5):453-61. PubMed ID: 1321707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCR amplification and simultaneous digoxigenin incorporation of long DNA probes for fluorescence in situ hybridization.
    Celeda D; Bettag U; Cremer C
    Biotechniques; 1992 Jan; 12(1):98-102. PubMed ID: 1734931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A DNA probe suitable for the detection of chromosome 21 copy number in human interphase nuclei by fluorescence in situ hybridization].
    Shi Q; Shan X; Zhang J; Zhang X; Chen Y; Deng X; Huang H; Yu L; Zhao S; Zheng Q; Adler I
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 1999 Feb; 16(1):36-40. PubMed ID: 9949239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1996; 51(3-4):253-61. PubMed ID: 8639232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical aberrations of chromosome 17 detected by FISH with DNA-specific probe in oral tumors.
    Tsuji T; Mimura Y; Maeda K; Ida M; Sasaki K; Shinozaki F
    Anticancer Res; 1994; 14(5A):1689-93. PubMed ID: 7847802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes.
    Devilee P; Thierry RF; Kievits T; Kolluri R; Hopman AH; Willard HF; Pearson PL; Cornelisse CJ
    Cancer Res; 1988 Oct; 48(20):5825-30. PubMed ID: 3167839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and efficiency of interphase-fish with alpha-satellite probe for detection of aneuploidy.
    Acar H; Yildirim MS; Kaynak M
    Genet Couns; 2002; 13(1):11-7. PubMed ID: 12017232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization.
    du Manoir S; Speicher MR; Joos S; Schröck E; Popp S; Döhner H; Kovacs G; Robert-Nicoud M; Lichter P; Cremer T
    Hum Genet; 1993 Feb; 90(6):590-610. PubMed ID: 8444465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei.
    Iourov IY; Vorsanova SG; Yurov YB
    Tsitol Genet; 2008; 42(5):3-8. PubMed ID: 19140435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interphase fluorescence in situ hybridization analysis: a study using centromeric probes 7, 8, and 12.
    Zhao L; Khan Z; Hayes KJ; Glassman AB
    Ann Clin Lab Sci; 1998; 28(1):51-6. PubMed ID: 9512785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A degenerate alpha satellite probe, detecting a centromeric deletion on chromosome 21 in an apparently normal human male, shows limitations of the use of satellite DNA probes for interphase ploidy analysis.
    Weier HU; Gray JW
    Anal Cell Pathol; 1992 Mar; 4(2):81-6. PubMed ID: 1550797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interphase cytogenetics of hematological cancer: comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes.
    Poddighe PJ; Moesker O; Smeets D; Awwad BH; Ramaekers FC; Hopman AH
    Cancer Res; 1991 Apr; 51(7):1959-67. PubMed ID: 2004382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe.
    Sohn SH; Cho EJ; Son WJ; Lee CY
    Theriogenology; 2007 Oct; 68(7):1003-11. PubMed ID: 17870153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.