These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8001536)

  • 1. Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):240-3. PubMed ID: 8001536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular drive and force production are not altered during bilateral contractions.
    Jakobi JM; Cafarelli E
    J Appl Physiol (1985); 1998 Jan; 84(1):200-6. PubMed ID: 9451636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-correlation of bilateral differences in fatigue during sustained maximal voluntary contraction.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1995; 70(4):305-10. PubMed ID: 7649141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brachialis muscle activity can be assessed with surface electromyography.
    Staudenmann D; Taube W
    J Electromyogr Kinesiol; 2015 Apr; 25(2):199-204. PubMed ID: 25468488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Muscle Activity in Response to Assistive Force during Isometric Elbow Flexion.
    Loh PY; Hayashi K; Nasir N; Muraki S
    J Mot Behav; 2020; 52(5):634-642. PubMed ID: 31571525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle activation of the elbow flexor and extensor muscles during self-resistance exercises: comparison of unilateral maximal cocontraction and bilateral self-resistance.
    Serrau V; Driss T; Vandewalle H; Behm DG; Lesne-Chabran E; Le Pellec-Muller A
    J Strength Cond Res; 2012 Sep; 26(9):2468-77. PubMed ID: 22027855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating the bilateral deficit: reducing neural deficits through residual force enhancement and activation reduction.
    MacDonald GZ; Mazara N; Herzog W; Power GA
    Eur J Appl Physiol; 2018 Sep; 118(9):1911-1919. PubMed ID: 29959517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions.
    Mista CA; Salomoni SE; Graven-Nielsen T
    J Electromyogr Kinesiol; 2014 Feb; 24(1):37-45. PubMed ID: 24321699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during isokinetic and isometric muscle actions of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2005 Oct; 15(5):482-95. PubMed ID: 15935960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of maximal unilateral versus bilateral voluntary contraction force.
    Matkowski B; Martin A; Lepers R
    Eur J Appl Physiol; 2011 Aug; 111(8):1571-8. PubMed ID: 21188415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG frequency during isometric, submaximal activity: a statistical model for biceps brachii.
    Solnik S; DeVita P; Grzegorczyk K; Koziatek A; Bober T
    Acta Bioeng Biomech; 2010; 12(3):21-8. PubMed ID: 21243967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of tendon vibration on motor unit activity, intermuscular coherence and force steadiness in the elbow flexors of males and females.
    Harwood B; Cornett KM; Edwards DL; Brown RE; Jakobi JM
    Acta Physiol (Oxf); 2014 Aug; 211(4):597-608. PubMed ID: 24888350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mechanical assistance on muscle activity and motor performance during isometric elbow flexion.
    Choi J; Yeoh WL; Matsuura S; Loh PY; Muraki S
    J Electromyogr Kinesiol; 2020 Feb; 50():102380. PubMed ID: 31841884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical nerve stimulation modulates motor unit activity in contralateral biceps brachii during steady isometric contractions.
    Hamilton LD; Mani D; Almuklass AM; Davis LA; Vieira T; Botter A; Enoka RM
    J Neurophysiol; 2018 Nov; 120(5):2603-2613. PubMed ID: 30156959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of neural adjustments and muscle oxygenation on task failure during sustained isometric contractions with elbow flexor muscles.
    Booghs C; Baudry S; Enoka R; Duchateau J
    Exp Physiol; 2012 Aug; 97(8):918-29. PubMed ID: 22496501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of motor variability related to experimental muscle pain during elbow-flexion contractions.
    Mista CA; Christensen SW; Graven-Nielsen T
    Hum Mov Sci; 2015 Feb; 39():222-35. PubMed ID: 25498290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of shoulder flexors to achieve isometric elbow extension in C6 tetraplegic patients during weight shift.
    Gefen JY; Gelmann AS; Herbison GJ; Cohen ME; Schmidt RR
    Spinal Cord; 1997 May; 35(5):308-13. PubMed ID: 9160456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction.
    Rantalainen T; KÅ‚odowski A; Piitulainen H
    J Electromyogr Kinesiol; 2012 Feb; 22(1):80-7. PubMed ID: 22019132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue-related electromyographic coherence and phase synchronization analysis between antagonistic elbow muscles.
    Wang L; Lu A; Zhang S; Niu W; Zheng F; Gong M
    Exp Brain Res; 2015 Mar; 233(3):971-82. PubMed ID: 25515087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular adaptations following antagonist resisted training.
    MacKenzie SJ; Rannelli LA; Yurchevich JJ
    J Strength Cond Res; 2010 Jan; 24(1):156-64. PubMed ID: 19996784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.