These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 8001764)

  • 21. Changes in plasma membrane fluidity lower the sensitivity of S. cerevisiae to killer toxin K1.
    Flegelová H; Chaloupka R; Novotná D; Malác J; Gásková D; Sigler K; Janderová B
    Folia Microbiol (Praha); 2003; 48(6):761-6. PubMed ID: 15058188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alteration in membrane fluidity and lipid composition, and modulation of H(+)-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid.
    Alexandre H; Mathieu B; Charpentier C
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():469-475. PubMed ID: 8868421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol-induced death and lipid composition of Saccharomyces cerevisiae: a comparative study of the role of sterols.
    Novotný C; Dolezalová L; Flieger M; Panos J; Karst F
    Folia Microbiol (Praha); 1992; 37(4):286-8. PubMed ID: 1452099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains.
    Aguilera F; Peinado RA; Millán C; Ortega JM; Mauricio JC
    Int J Food Microbiol; 2006 Jul; 110(1):34-42. PubMed ID: 16690148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae.
    Sharma SC
    FEMS Yeast Res; 2006 Nov; 6(7):1047-51. PubMed ID: 17042754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of miconazole on the structure and function of plasma membrane of Candida albicans.
    Ansari S; Prasad R
    FEMS Microbiol Lett; 1993 Nov; 114(1):93-8. PubMed ID: 8293965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.
    Kim HS; Kim NR; Choi W
    Biotechnol Lett; 2011 Mar; 33(3):509-15. PubMed ID: 21063748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols.
    Hossack JA; Rose AH
    J Bacteriol; 1976 Jul; 127(1):67-75. PubMed ID: 776948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of fatty acid supplementation on thermotropic behavior of membrane lipids and leucine transport in Saccharomyces cerevisiae.
    Basu J; Kundu M; Chakrabarti P
    Arch Biochem Biophys; 1986 Nov; 250(2):382-9. PubMed ID: 3535679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough.
    Murakami Y; Yokoigawa K; Kawai F; Kawai H
    Biosci Biotechnol Biochem; 1996 Nov; 60(11):1874-6. PubMed ID: 8987866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.
    Turk M; Méjanelle L; Sentjurc M; Grimalt JO; Gunde-Cimerman N; Plemenitas A
    Extremophiles; 2004 Feb; 8(1):53-61. PubMed ID: 15064990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of sterol structure on yeast plasma membrane properties.
    Bottema CD; Rodriguez RJ; Parks LW
    Biochim Biophys Acta; 1985 Mar; 813(2):313-20. PubMed ID: 3882148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane Fluidity of Saccharomyces cerevisiae from
    Yang Y; Xia Y; Hu W; Tao L; Ni L; Yu J; Ai L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological variants of Saccharomyces cerevisiae and Kloeckera apiculata from palm wine and cashew juice.
    Owuama CI; Saunders JR
    J Appl Bacteriol; 1990 May; 68(5):491-4. PubMed ID: 2196256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acid alterations in Saccharomyces cerevisiae exposed to ethanol stress.
    Sajbidor J; Grego J
    FEMS Microbiol Lett; 1992 May; 72(1):13-6. PubMed ID: 1612413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the composition and peroxidation of yeast membrane lipids during ethanol stress.
    Gupta S; Sharma SC; Singh B
    Acta Microbiol Immunol Hung; 1994; 41(2):197-204. PubMed ID: 7804723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress.
    Niu YP; Lin XH; Dong SJ; Yuan QP; Li H
    Int J Biochem Cell Biol; 2016 Oct; 79():337-344. PubMed ID: 27613572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of growth rate on ethanol tolerance of Saccharomyces cerevisiae.
    Novotný C; Flieger M; Panos J; Dolezalová L
    Folia Microbiol (Praha); 1992; 37(1):43-6. PubMed ID: 1505861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ethanol on the sterols of the fission yeast Schizosaccharomyces pombe.
    Koukkou AI; Tsoukatos D; Drainas C
    FEMS Microbiol Lett; 1993 Aug; 111(2-3):171-5. PubMed ID: 8405927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.