These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 8002579)
1. An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. Pavel H; Forsman M; Shingler V J Bacteriol; 1994 Dec; 176(24):7550-7. PubMed ID: 8002579 [TBL] [Abstract][Full Text] [Related]
2. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. Shingler V; Moore T J Bacteriol; 1994 Mar; 176(6):1555-60. PubMed ID: 8132448 [TBL] [Abstract][Full Text] [Related]
3. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
4. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Sarand I; Skärfstad E; Forsman M; Romantschuk M; Shingler V Appl Environ Microbiol; 2001 Jan; 67(1):162-71. PubMed ID: 11133441 [TBL] [Abstract][Full Text] [Related]
5. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
6. Growth phase-dependent transcription of the sigma(54)-dependent Po promoter controlling the Pseudomonas-derived (methyl)phenol dmp operon of pVI150. Sze CC; Moore T; Shingler V J Bacteriol; 1996 Jul; 178(13):3727-35. PubMed ID: 8682773 [TBL] [Abstract][Full Text] [Related]
7. Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. Fernández S; Shingler V; De Lorenzo V J Bacteriol; 1994 Aug; 176(16):5052-8. PubMed ID: 8051017 [TBL] [Abstract][Full Text] [Related]
8. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
9. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Shingler V; Pavel H Mol Microbiol; 1995 Aug; 17(3):505-13. PubMed ID: 8559069 [TBL] [Abstract][Full Text] [Related]
10. Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. O'Neill E; Ng LC; Sze CC; Shingler V Mol Microbiol; 1998 Apr; 28(1):131-41. PubMed ID: 9593302 [TBL] [Abstract][Full Text] [Related]
11. Novel effector control through modulation of a preexisting binding site of the aromatic-responsive sigma(54)-dependent regulator DmpR. O'Neill E; Sze CC; Shingler V J Biol Chem; 1999 Nov; 274(45):32425-32. PubMed ID: 10542286 [TBL] [Abstract][Full Text] [Related]
12. Genetic evidence for interdomain regulation of the phenol-responsive final sigma54-dependent activator DmpR. Ng LC; O'Neill E; Shingler V J Biol Chem; 1996 Jul; 271(29):17281-6. PubMed ID: 8663326 [TBL] [Abstract][Full Text] [Related]
13. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. Ray S; Banerjee A J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616 [TBL] [Abstract][Full Text] [Related]
14. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Jeong JJ; Kim JH; Kim CK; Hwang I; Lee K Microbiology (Reading); 2003 Nov; 149(Pt 11):3265-3277. PubMed ID: 14600239 [TBL] [Abstract][Full Text] [Related]
15. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Wise AA; Kuske CR Appl Environ Microbiol; 2000 Jan; 66(1):163-9. PubMed ID: 10618218 [TBL] [Abstract][Full Text] [Related]
16. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. Schirmer F; Ehrt S; Hillen W J Bacteriol; 1997 Feb; 179(4):1329-36. PubMed ID: 9023219 [TBL] [Abstract][Full Text] [Related]
17. Location and organization of the dimethylphenol catabolic genes of Pseudomonas CF600. Bartilson M; Nordlund I; Shingler V Mol Gen Genet; 1990 Jan; 220(2):294-300. PubMed ID: 2325624 [TBL] [Abstract][Full Text] [Related]
18. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. Jaspers MC; Suske WA; Schmid A; Goslings DA; Kohler HP; van der Meer JR J Bacteriol; 2000 Jan; 182(2):405-17. PubMed ID: 10629187 [TBL] [Abstract][Full Text] [Related]
19. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Powlowski J; Shingler V Biodegradation; 1994 Dec; 5(3-4):219-36. PubMed ID: 7765834 [TBL] [Abstract][Full Text] [Related]
20. Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. Skärfstad E; O'Neill E; Garmendia J; Shingler V J Bacteriol; 2000 Jun; 182(11):3008-16. PubMed ID: 10809676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]