These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 8002585)
21. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. Perry RD; Craig SK; Abney J; Bobrov AG; Kirillina O; Mier I; Truszczynska H; Fetherston JD Microbiology (Reading); 2012 Mar; 158(Pt 3):804-815. PubMed ID: 22222497 [TBL] [Abstract][Full Text] [Related]
22. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. Hoe NP; Minion FC; Goguen JD J Bacteriol; 1992 Jul; 174(13):4275-86. PubMed ID: 1624422 [TBL] [Abstract][Full Text] [Related]
23. Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Thompson JM; Jones HA; Perry RD Infect Immun; 1999 Aug; 67(8):3879-92. PubMed ID: 10417152 [TBL] [Abstract][Full Text] [Related]
24. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Bearden SW; Fetherston JD; Perry RD Infect Immun; 1997 May; 65(5):1659-68. PubMed ID: 9125544 [TBL] [Abstract][Full Text] [Related]
25. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Kirillina O; Fetherston JD; Bobrov AG; Abney J; Perry RD Mol Microbiol; 2004 Oct; 54(1):75-88. PubMed ID: 15458406 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the complexity of gene regulation by fur in Vibrio cholerae. Litwin CM; Calderwood SB J Bacteriol; 1994 Jan; 176(1):240-8. PubMed ID: 8282702 [TBL] [Abstract][Full Text] [Related]
27. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Fetherston JD; Schuetze P; Perry RD Mol Microbiol; 1992 Sep; 6(18):2693-704. PubMed ID: 1447977 [TBL] [Abstract][Full Text] [Related]
28. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. Bearden SW; Staggs TM; Perry RD J Bacteriol; 1998 Mar; 180(5):1135-47. PubMed ID: 9495751 [TBL] [Abstract][Full Text] [Related]
29. Expression of iron binding proteins and hemin binding activity in the dental pathogen Actinobacillus actinomycetemcomitans. Graber KR; Smoot LM; Actis LA FEMS Microbiol Lett; 1998 Jun; 163(2):135-42. PubMed ID: 9673015 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the Vibrio anguillarum fur gene: role in regulation of expression of the FatA outer membrane protein and catechols. Tolmasky ME; Wertheimer AM; Actis LA; Crosa JH J Bacteriol; 1994 Jan; 176(1):213-20. PubMed ID: 8282699 [TBL] [Abstract][Full Text] [Related]
31. The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. LillardJr JW; Bearden SW; Fetherston JD; Perry RD Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():197-209. PubMed ID: 10206699 [TBL] [Abstract][Full Text] [Related]
32. Fur is a repressor of biofilm formation in Yersinia pestis. Sun F; Gao H; Zhang Y; Wang L; Fang N; Tan Y; Guo Z; Xia P; Zhou D; Yang R PLoS One; 2012; 7(12):e52392. PubMed ID: 23285021 [TBL] [Abstract][Full Text] [Related]
33. Reciprocal Regulation between Fur and Two RyhB Homologs in Ni B; Wu HS; Xin YQ; Zhang QW; Zhang YQ Biomed Environ Sci; 2021 Apr; 34(4):299-308. PubMed ID: 33894809 [TBL] [Abstract][Full Text] [Related]
34. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. Buchrieser C; Prentice M; Carniel E J Bacteriol; 1998 May; 180(9):2321-9. PubMed ID: 9573181 [TBL] [Abstract][Full Text] [Related]
35. Storage reservoirs of hemin and inorganic iron in Yersinia pestis. Perry RD; Lucier TS; Sikkema DJ; Brubaker RR Infect Immun; 1993 Jan; 61(1):32-9. PubMed ID: 8418054 [TBL] [Abstract][Full Text] [Related]
36. Hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis. Kirillina O; Bobrov AG; Fetherston JD; Perry RD Infect Immun; 2006 Nov; 74(11):6171-8. PubMed ID: 16954402 [TBL] [Abstract][Full Text] [Related]
37. Iron acquisition and regulation in Campylobacter jejuni. Palyada K; Threadgill D; Stintzi A J Bacteriol; 2004 Jul; 186(14):4714-29. PubMed ID: 15231804 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Rossi MS; Fetherston JD; Létoffé S; Carniel E; Perry RD; Ghigo JM Infect Immun; 2001 Nov; 69(11):6707-17. PubMed ID: 11598042 [TBL] [Abstract][Full Text] [Related]
39. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Gong S; Bearden SW; Geoffroy VA; Fetherston JD; Perry RD Infect Immun; 2001 May; 69(5):2829-37. PubMed ID: 11292695 [TBL] [Abstract][Full Text] [Related]
40. Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis. Plano GV; Straley SC J Bacteriol; 1995 Jul; 177(13):3843-54. PubMed ID: 7601852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]