These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 8002594)
21. A Zymomonas mobilis mutant with delayed growth on high glucose concentrations. Douka E; Koukkou AI; Vartholomatos G; Frillingos S; Papamichael EM; Drainas C J Bacteriol; 1999 Aug; 181(15):4598-604. PubMed ID: 10419959 [TBL] [Abstract][Full Text] [Related]
22. Revitalizing the ethanologenic bacterium Hu M; Chen X; Huang J; Du J; Li M; Yang S Bioresour Bioprocess; 2021; 8(1):119. PubMed ID: 34873566 [TBL] [Abstract][Full Text] [Related]
23. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis. Hardman MJ; Scopes RK Eur J Biochem; 1988 Apr; 173(1):203-9. PubMed ID: 3356190 [TBL] [Abstract][Full Text] [Related]
24. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Halbig D; Wiegert T; Blaudeck N; Freudl R; Sprenger GA Eur J Biochem; 1999 Jul; 263(2):543-51. PubMed ID: 10406965 [TBL] [Abstract][Full Text] [Related]
25. Unconventional bacterial association for dough leavening. Musatti A; Mapelli C; Foschino R; Picozzi C; Rollini M Int J Food Microbiol; 2016 Nov; 237():28-34. PubMed ID: 27541979 [TBL] [Abstract][Full Text] [Related]
26. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy. De Graaf AA; Striegel K; Wittig RM; Laufer B; Schmitz G; Wiechert W; Sprenger GA; Sahm H Arch Microbiol; 1999; 171(6):371-85. PubMed ID: 10369893 [TBL] [Abstract][Full Text] [Related]
27. The effect of osmo-induced stress on product formation by Zymomonas mobilis on sucrose. Bekers M; Vigants A; Laukevics J; Toma M; Rapoports A; Zikmanis P Int J Food Microbiol; 2000 Apr; 55(1-3):147-50. PubMed ID: 10791734 [TBL] [Abstract][Full Text] [Related]
28. Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Crittenden RG; Playne MJ Appl Microbiol Biotechnol; 2002 Mar; 58(3):297-302. PubMed ID: 11935179 [TBL] [Abstract][Full Text] [Related]
29. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. Loos H; Sahm H; Sprenger GA FEMS Microbiol Lett; 1993 Mar; 107(2-3):293-8. PubMed ID: 8472911 [TBL] [Abstract][Full Text] [Related]
30. Sorbitol production using recombinant Zymomonas mobilis strain. Liu C; Dong H; Zhong J; Ryu DD; Bao J J Biotechnol; 2010 Jul; 148(2-3):105-12. PubMed ID: 20438775 [TBL] [Abstract][Full Text] [Related]
31. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. Kurumbang NP; Vera JM; Hebert AS; Coon JJ; Landick R PLoS One; 2020; 15(8):e0226235. PubMed ID: 32797046 [TBL] [Abstract][Full Text] [Related]
32. Lactobionic acid production by glucose-fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli. Goderska K; Juzwa W; Szwengiel A; Czarnecki Z Biotechnol Lett; 2015 Oct; 37(10):2047-53. PubMed ID: 26091863 [TBL] [Abstract][Full Text] [Related]
33. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands. Nurizzo D; Halbig D; Sprenger GA; Baker EN Biochemistry; 2001 Nov; 40(46):13857-67. PubMed ID: 11705375 [TBL] [Abstract][Full Text] [Related]
34. Sucrose utilization by Zymomonas mobilis: formation of a levan. Dawes EA; Ribbons DW; Rees DA Biochem J; 1966 Mar; 98(3):804-12. PubMed ID: 4287843 [TBL] [Abstract][Full Text] [Related]
35. Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. Weisser P; Krämer R; Sahm H; Sprenger GA J Bacteriol; 1995 Jun; 177(11):3351-4. PubMed ID: 7768841 [TBL] [Abstract][Full Text] [Related]
36. Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein. Wiegert T; Sahm H; Sprenger GA Eur J Biochem; 1997 Feb; 244(1):107-12. PubMed ID: 9063452 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of glutamate uptake in Zymomonas mobilis. Ruhrmann J; Krämer R J Bacteriol; 1992 Dec; 174(23):7579-84. PubMed ID: 1332937 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous enzymatic synthesis of gluconic acid and sorbitol. Continuous process development using glucose-fructose oxidoreductase from Zymomonas mobilis. Silva-Martinez M; Haltrich D; Novalic S; Kulbe KD; Nidetzky B Appl Biochem Biotechnol; 1998; 70-72():863-8. PubMed ID: 18576049 [TBL] [Abstract][Full Text] [Related]
39. Adaptive Laboratory Evolution and Metabolic Engineering of Huang J; Wang X; Chen X; Li H; Chen Y; Hu Z; Yang S ACS Synth Biol; 2023 Apr; 12(4):1297-1307. PubMed ID: 37036829 [TBL] [Abstract][Full Text] [Related]
40. Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Folle AB; Baschera VM; Vivan LT; Carra S; Polidoro TA; Malvessi E; da Silveira MM Bioprocess Biosyst Eng; 2018 Feb; 41(2):185-194. PubMed ID: 29052765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]