These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 8002594)
41. Sorbitol production from mixtures of molasses and sugarcane bagasse hydrolysate using the thermally adapted Zymomonas mobilis ZM AD41. Phannarangsee Y; Jiawkhangphlu B; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P Sci Rep; 2024 Mar; 14(1):5563. PubMed ID: 38448501 [TBL] [Abstract][Full Text] [Related]
42. Control of the association state of tetrameric glucose-fructose oxidoreductase from Zymomonas mobilis as the rationale for stabilization of the enzyme in biochemical reactors. Fürlinger M; Satory M; Haltrich D; Kulbe KD; Nidetzky B J Biochem; 1998 Aug; 124(2):280-6. PubMed ID: 9685715 [TBL] [Abstract][Full Text] [Related]
43. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Wiebe MG; Nygård Y; Oja M; Andberg M; Ruohonen L; Koivula A; Penttilä M; Toivari M Appl Microbiol Biotechnol; 2015 Nov; 99(22):9439-47. PubMed ID: 26264136 [TBL] [Abstract][Full Text] [Related]
44. Cloning, sequence analysis, and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis. Kanagasundaram V; Scopes RK J Bacteriol; 1992 Mar; 174(5):1439-47. PubMed ID: 1537789 [TBL] [Abstract][Full Text] [Related]
45. Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membrane reactor. Nidetzky B; Fürlinger M; Gollhofer D; Scopes RK; Haltrich D; Kulbe KD Biotechnol Bioeng; 1997 Mar; 53(6):623-9. PubMed ID: 18634063 [TBL] [Abstract][Full Text] [Related]
47. Crystallization and preliminary X-ray analysis of glucose-fructose oxidoreductase from Zymomonas mobilis. Loos H; Ermler U; Sprenger GA; Sahm H Protein Sci; 1994 Dec; 3(12):2447-9. PubMed ID: 7756998 [TBL] [Abstract][Full Text] [Related]
48. d-Glucose Transport System of Zymomonas mobilis. Dimarco AA; Romano AH Appl Environ Microbiol; 1985 Jan; 49(1):151-7. PubMed ID: 16346694 [TBL] [Abstract][Full Text] [Related]
49. [Sugar substitutes in the diabetic diet]. Mehnert H Int Z Vitam Ernahrungsforsch Beih; 1976; 15():295-324. PubMed ID: 783058 [TBL] [Abstract][Full Text] [Related]
50. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Parker C; Barnell WO; Snoep JL; Ingram LO; Conway T Mol Microbiol; 1995 Mar; 15(5):795-802. PubMed ID: 7596282 [TBL] [Abstract][Full Text] [Related]
51. Sugar retrieval by coats of developing seeds of Phaseolus vulgaris L. and Vicia faba L. Ritchie RJ; Fieuw-Makaroff S; Patrick JW Plant Cell Physiol; 2003 Feb; 44(2):163-72. PubMed ID: 12610219 [TBL] [Abstract][Full Text] [Related]
52. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. Sootsuwan K; Lertwattanasakul N; Thanonkeo P; Matsushita K; Yamada M J Mol Microbiol Biotechnol; 2008; 14(4):163-75. PubMed ID: 18089934 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of bioethanol production from carob pods by Zymomonas mobilis and Saccharomyces cerevisiae In solid submerged fermentation. Saharkhiz S; Mazaheri D; Shojaosadati SA Prep Biochem Biotechnol; 2013; 43(5):415-30. PubMed ID: 23581778 [TBL] [Abstract][Full Text] [Related]
54. A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of a markedly low fructose-to-glucose ratio phenotype. Desnoues E; Génard M; Quilot-Turion B; Baldazzi V Plant J; 2018 May; 94(4):685-698. PubMed ID: 29543354 [TBL] [Abstract][Full Text] [Related]
55. Conversion of glucose to sorbitol and fructose by liver-derived cells in culture. Levine GA; Bissell MJ; Bissell DM J Biol Chem; 1978 Sep; 253(17):5985-9. PubMed ID: 210165 [TBL] [Abstract][Full Text] [Related]
56. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. Malvessi E; Carra S; Pasquali FC; Kern DB; da Silveira MM; Ayub MA J Ind Microbiol Biotechnol; 2013 Jan; 40(1):1-10. PubMed ID: 23053345 [TBL] [Abstract][Full Text] [Related]
57. Nutritional significance of fructose and sugar alcohols. Wang YM; van Eys J Annu Rev Nutr; 1981; 1():437-75. PubMed ID: 6821187 [TBL] [Abstract][Full Text] [Related]
58. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase. Kim DM; Kim HS Biotechnol Bioeng; 1992 Feb; 39(3):336-42. PubMed ID: 18600950 [TBL] [Abstract][Full Text] [Related]
59. Hydrogen sulfide formation as well as ethanol production in different media by cysND- and/or cysIJ-inactivated mutant strains of Zymomonas mobilis ZM4. Tan T; Liu C; Liu L; Zhang K; Zou S; Hong J; Zhang M Bioprocess Biosyst Eng; 2013 Oct; 36(10):1363-73. PubMed ID: 23086550 [TBL] [Abstract][Full Text] [Related]
60. Fatty acid profiles of Streptococcus mutans NCTC 10832 grown on synthetic mediun with sucrose, fructose or sorbitol. Drucker DB; Greenman J; Melville TH Microbios; 1976; 16(65-66):227-31. PubMed ID: 1028906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]