These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8002602)
21. Classification of bacteria nodulating Lathyrus japonicus and Lathyrus pratensis in northern Quebec as strains of Rhizobium leguminosarum biovar viciae. Drouin P; Prévost D; Antoun H Int J Syst Bacteriol; 1996 Oct; 46(4):1016-24. PubMed ID: 8863431 [TBL] [Abstract][Full Text] [Related]
22. Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins. Król J; Skorupska A Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1389-1394. PubMed ID: 9141701 [TBL] [Abstract][Full Text] [Related]
23. Symbiotic plasmid is required for NolR to fully repress nodulation genes in Rhizobium leguminosarum A34. Li F; Hou B; Hong G Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):901-7. PubMed ID: 18850056 [TBL] [Abstract][Full Text] [Related]
24. Comparison of characteristics of the nodX genes from various Rhizobium leguminosarum strains. Ovtsyna AO; Rademaker GJ; Esser E; Weinman J; Rolfe BG; Tikhonovich IA; Lugtenberg BJ; Thomas-Oates JE; Spaink HP Mol Plant Microbe Interact; 1999 Mar; 12(3):252-8. PubMed ID: 10065561 [TBL] [Abstract][Full Text] [Related]
25. Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4'-phosphopantetheine prosthetic group. Geiger O; Spaink HP; Kennedy EP J Bacteriol; 1991 May; 173(9):2872-8. PubMed ID: 2019559 [TBL] [Abstract][Full Text] [Related]
26. The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Miller LD; Yost CK; Hynes MF; Alexandre G Mol Microbiol; 2007 Jan; 63(2):348-62. PubMed ID: 17163982 [TBL] [Abstract][Full Text] [Related]
27. Identification of a Rhizobium leguminosarum gene homologous to nodT but located outside the symbiotic plasmid. Rivilla R; Downie JA Gene; 1994 Jun; 144(1):87-91. PubMed ID: 8026763 [TBL] [Abstract][Full Text] [Related]
29. Isolation and characterization of ropA homologous genes from Rhizobium leguminosarum biovars viciae and trifolii. Roest HP; Bloemendaal CJ; Wijffelman CA; Lugtenberg BJ J Bacteriol; 1995 Sep; 177(17):4985-91. PubMed ID: 7545151 [TBL] [Abstract][Full Text] [Related]
30. A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NoIL in Rhizobium leguminosarum. Pacios Bras C; Jordá MA; Wijfjes AH; Harteveld M; Stuurman N; Thomas-Oates JE; Spaink HP Mol Plant Microbe Interact; 2000 Apr; 13(4):475-9. PubMed ID: 10755312 [TBL] [Abstract][Full Text] [Related]
31. Mutants in the nodFEL promoter of Rhizobium leguminosarum bv. viciae reveal a role of individual nucleotides in transcriptional activation and protein binding. Okker RJ; Spaink HP; Lugtenberg BJ; Schlaman HR Arch Microbiol; 2001 Feb; 175(2):152-60. PubMed ID: 11285743 [TBL] [Abstract][Full Text] [Related]
32. Identification of a gene for a chemoreceptor of the methyl-accepting type in the symbiotic plasmid of Rhizobium leguminosarum bv. viciae UPM791. Brito B; Palacios JM; Ruiz-Argüeso T; Imperial J Biochim Biophys Acta; 1996 Jul; 1308(1):7-11. PubMed ID: 8765742 [TBL] [Abstract][Full Text] [Related]
33. Rhizobium leguminosarum NodT is related to a family of outer-membrane transport proteins that includes TolC, PrtF, CyaE and AprF. Rivilla R; Sutton JM; Downie JA Gene; 1995 Aug; 161(1):27-31. PubMed ID: 7642132 [TBL] [Abstract][Full Text] [Related]
34. [Functional activity of exoglycans from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 during the formation of legume-rhizobia symbiosis against a high-nitrogen background]. Kosenko LV; Mandrovskaia NM; Krugova ED Mikrobiologiia; 2004; 73(3):416-22. PubMed ID: 15315237 [TBL] [Abstract][Full Text] [Related]
35. Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. van Spronsen PC; Tak T; Rood AM; van Brussel AA; Kijne JW; Boot KJ Mol Plant Microbe Interact; 2003 Jan; 16(1):83-91. PubMed ID: 12580285 [TBL] [Abstract][Full Text] [Related]
36. Genetic and chemical characterization of a mutant that disrupts synthesis of the lipopolysaccharide core tetrasaccharide in Rhizobium leguminosarum. Allaway D; Jeyaretnam B; Carlson RW; Poole PS J Bacteriol; 1996 Nov; 178(21):6403-6. PubMed ID: 8892852 [TBL] [Abstract][Full Text] [Related]
37. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. Vedam V; Kannenberg E; Datta A; Brown D; Haynes-Gann JG; Sherrier DJ; Carlson RW J Bacteriol; 2006 Mar; 188(6):2126-33. PubMed ID: 16513742 [TBL] [Abstract][Full Text] [Related]
38. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Schloter M; Wiehe W; Assmus B; Steindl H; Becke H; Höflich G; Hartmann A Appl Environ Microbiol; 1997 May; 63(5):2038-46. PubMed ID: 9143133 [TBL] [Abstract][Full Text] [Related]
39. The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. Mongiardini EJ; Ausmees N; Pérez-Giménez J; Julia Althabegoiti M; Ignacio Quelas J; López-García SL; Lodeiro AR FEMS Microbiol Ecol; 2008 Aug; 65(2):279-88. PubMed ID: 18393991 [TBL] [Abstract][Full Text] [Related]