These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 8002977)
1. The effect of sulfite on the ATP hydrolysis and synthesis activity of membrane-bound H(+)-ATP synthase from various species. Bakels RH; Van Walraven HS; Van Wielink JE; Van Der Zwet-De Graaff I; Krenn BE; Krab K; Berden JA; Kraayenhof R Biochem Biophys Res Commun; 1994 Jun; 201(2):487-92. PubMed ID: 8002977 [TBL] [Abstract][Full Text] [Related]
2. Sulfite inhibits the F1F0-ATP synthase and activates the F1F0-ATPase of Paracoccus denitrificans. Pacheco-Moisés F; Minauro-Sanmiguel F; Bravo C; García JJ J Bioenerg Biomembr; 2002 Aug; 34(4):269-78. PubMed ID: 12392190 [TBL] [Abstract][Full Text] [Related]
3. The effect of sulfite on the ATP hydrolysis and synthesis activities in chloroplasts and cyanobacterial membrane vesicles can be explained by competition with phosphate. Bakels RH; Van Wielink JE; Krab K; Van Walraven HS Arch Biochem Biophys; 1996 Aug; 332(1):170-4. PubMed ID: 8806722 [TBL] [Abstract][Full Text] [Related]
4. ATP synthesis and hydrolysis by a hybrid system reconstituted from the beta-subunit of Escherichia coli F1-ATPase and beta-less chromatophores of Rhodospirillum rubrum. Gromet-Elhanan Z; Khananshvili D; Weiss S; Kanazawa H; Futai M J Biol Chem; 1985 Oct; 260(23):12635-40. PubMed ID: 2864345 [TBL] [Abstract][Full Text] [Related]
5. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase. Beharry S; Bragg PD Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850 [TBL] [Abstract][Full Text] [Related]
6. Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans F0F1-ATPase. Pacheco-Moisés F; García JJ; Rodríguez-Zavala JS; Moreno-Sánchez R Eur J Biochem; 2000 Feb; 267(4):993-1000. PubMed ID: 10672007 [TBL] [Abstract][Full Text] [Related]
7. Isolation and purification of an active gamma-subunit of the F0.F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. The role of gamma in ATP synthesis and hydrolysis as compared to proton translocation. Khananshvili D; Gromet-Elhanan Z J Biol Chem; 1982 Oct; 257(19):11377-83. PubMed ID: 6181058 [TBL] [Abstract][Full Text] [Related]
8. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Wang JH; Cesana J; Wu JC Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the proton-translocation stoichiometry of H(+)-ATP synthases in two phototrophic prokaryotes by external pH. Krenn BE; Van Walraven HS; Scholts MJ; Kraayenhof R Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):705-9. PubMed ID: 8379927 [TBL] [Abstract][Full Text] [Related]
10. Sulfite stimulates the ATP hydrolysis activity of but not proton translocation by the ATP synthase of Rhodobacter capsulatus and interferes with its activation by delta muH+. Cappellini P; Turina P; Fregni V; Melandri BA Eur J Biochem; 1997 Sep; 248(2):496-506. PubMed ID: 9346308 [TBL] [Abstract][Full Text] [Related]
11. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles. Hatefi Y; Matsuno-Yagi A Ann N Y Acad Sci; 1992 Nov; 671():377-84; discussion 385. PubMed ID: 1288334 [No Abstract] [Full Text] [Related]
12. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
13. Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes. Zharova TV; Vinogradov AD J Biol Chem; 2004 Mar; 279(13):12319-24. PubMed ID: 14722115 [TBL] [Abstract][Full Text] [Related]
15. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
16. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+. Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614 [TBL] [Abstract][Full Text] [Related]
18. Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores. Norling B; Strid A; Tourikas C; Nyrén P Eur J Biochem; 1989 Dec; 186(1-2):333-7. PubMed ID: 2532130 [TBL] [Abstract][Full Text] [Related]
19. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]