These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 8003024)
1. Site directed substitutions suggest that His-418 of beta-galactosidase (E. coli) is a ligand to Mg2+. Roth NJ; Huber RE Biochem Biophys Res Commun; 1994 Jun; 201(2):866-70. PubMed ID: 8003024 [TBL] [Abstract][Full Text] [Related]
2. Glu-416 of beta-galactosidase (Escherichia coli) is a Mg2+ ligand and beta-galactosidases with substitutions for Glu-416 are inactivated, rather than activated, by MG2+. Roth NJ; Huber RE Biochem Biophys Res Commun; 1996 Feb; 219(1):111-5. PubMed ID: 8619791 [TBL] [Abstract][Full Text] [Related]
3. E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inactivation. Martinez-Bilbao M; Gaunt MT; Huber RE Biochemistry; 1995 Oct; 34(41):13437-42. PubMed ID: 7577931 [TBL] [Abstract][Full Text] [Related]
4. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. Roth NJ; Huber RE J Biol Chem; 1996 Jun; 271(24):14296-301. PubMed ID: 8662937 [TBL] [Abstract][Full Text] [Related]
5. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis. Roth NJ; Rob B; Huber RE Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715 [TBL] [Abstract][Full Text] [Related]
6. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Yuan J; Martinez-Bilbao M; Huber RE Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):527-31. PubMed ID: 7909660 [TBL] [Abstract][Full Text] [Related]
7. Quaternary structure, Mg2+ interactions, and some kinetic properties of the beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1. Huber RE; Roth NJ; Bahl H J Protein Chem; 1996 Oct; 15(7):621-9. PubMed ID: 8968953 [TBL] [Abstract][Full Text] [Related]
8. Site specific mutants of beta-galactosidase show that Tyr-503 is unimportant in Mg2+ binding but that Glu-461 is very important and may be a ligand to Mg2+. Edwards RA; Cupples CG; Huber RE Biochem Biophys Res Commun; 1990 Aug; 171(1):33-7. PubMed ID: 2118347 [TBL] [Abstract][Full Text] [Related]
9. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism. Xu X; Kantrowitz ER Biochemistry; 1993 Oct; 32(40):10683-91. PubMed ID: 8104481 [TBL] [Abstract][Full Text] [Related]
10. His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state. Huber RE; Hlede IY; Roth NJ; McKenzie KC; Ghumman KK Biochem Cell Biol; 2001; 79(2):183-93. PubMed ID: 11310566 [TBL] [Abstract][Full Text] [Related]
11. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439 [TBL] [Abstract][Full Text] [Related]
12. The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. Lin J; Abeygunawardana C; Frick DN; Bessman MJ; Mildvan AS Biochemistry; 1996 May; 35(21):6715-26. PubMed ID: 8639622 [TBL] [Abstract][Full Text] [Related]
13. Enhanced catalysis by active-site mutagenesis at aspartic acid 153 in Escherichia coli alkaline phosphatase. Matlin AR; Kendall DA; Carano KS; Banzon JA; Klecka SB; Solomon NM Biochemistry; 1992 Sep; 31(35):8196-200. PubMed ID: 1525159 [TBL] [Abstract][Full Text] [Related]
14. Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. Cupples CG; Miller JH; Huber RE J Biol Chem; 1990 Apr; 265(10):5512-8. PubMed ID: 1969405 [TBL] [Abstract][Full Text] [Related]
15. Beta-galactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Sutendra G; Wong S; Fraser ME; Huber RE Biochem Biophys Res Commun; 2007 Jan; 352(2):566-70. PubMed ID: 17126292 [TBL] [Abstract][Full Text] [Related]
16. X-ray, NMR, and mutational studies of the catalytic cycle of the GDP-mannose mannosyl hydrolase reaction. Gabelli SB; Azurmendi HF; Bianchet MA; Amzel LM; Mildvan AS Biochemistry; 2006 Sep; 45(38):11290-303. PubMed ID: 16981689 [TBL] [Abstract][Full Text] [Related]
17. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities. Shyur LF; Aleshin AE; Fromm HJ Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527 [TBL] [Abstract][Full Text] [Related]
18. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit. Calugaru SV; Hall BG; Sinnott ML Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):281-6. PubMed ID: 7492325 [TBL] [Abstract][Full Text] [Related]
19. Multiple replacements establish the importance of tyrosine-503 in beta-galactosidase (Escherichia coli). Ring M; Huber RE Arch Biochem Biophys; 1990 Dec; 283(2):342-50. PubMed ID: 2125820 [TBL] [Abstract][Full Text] [Related]
20. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase. Selwood T; Sinnott ML Biochem J; 1990 Jun; 268(2):317-23. PubMed ID: 2114090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]