These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8003457)

  • 1. The visual fields of American horseshoe crabs: two different eye shapes in Limulus polyphemus.
    Weiner WW; Chamberlain SC
    Vis Neurosci; 1994; 11(2):333-46. PubMed ID: 8003457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the lateral eye of American horseshoe crabs: visual field and dioptric array.
    Shih MJ; Weiner WW; Wheatley KK; DePoncheau JL; Sydlik MA; Chamberlain SC
    Vis Neurosci; 1995; 12(3):485-92. PubMed ID: 7654606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Limulus-eye view of the world.
    Herzog ED; Barlow RB
    Vis Neurosci; 1992 Dec; 9(6):571-80. PubMed ID: 1450109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, visual field, and resolution in the juvenile Limulus lateral eye.
    Meadors S; McGuiness C; Dodge FA; Barlow RB
    Biol Bull; 2001 Oct; 201(2):272-4. PubMed ID: 11687419
    [No Abstract]   [Full Text] [Related]  

  • 5. Simple Eyes, Extraocular Photoreceptors and Opsins in the American Horseshoe Crab.
    Battelle BA
    Integr Comp Biol; 2016 Nov; 56(5):809-819. PubMed ID: 27444526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of arthropod visual systems: development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura).
    Harzsch S; Vilpoux K; Blackburn DC; Platchetzki D; Brown NL; Melzer R; Kempler KE; Battelle BA
    Dev Dyn; 2006 Oct; 235(10):2641-55. PubMed ID: 16788994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial control of rhabdom shedding in the lateral eye of the American horseshoe crab, Limulus polyphemus.
    Warren DJ; Chamberlain SC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):371-9. PubMed ID: 12073082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial control of photomechanical movements in the lateral eye of the American horseshoe crab, Limulus polyphemus.
    Ankrom LP; Chamberlain SC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):203-9. PubMed ID: 11976888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor cells dissociated from the compound lateral eye of the horseshoe crab, Limulus polyphemus, I: Structure and ultrastructure.
    Jinks RN; Hanna WJ; Renninger GH; Chamberlain SC
    Vis Neurosci; 1993; 10(4):597-607. PubMed ID: 8338799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation-dependent differences in electroretinographic latency patterns in uniform and variegated horseshoe crabs.
    Kim B; Wasserman GS
    Biol Signals Recept; 1998; 7(4):227-34. PubMed ID: 9730582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple mechanisms of rhabdom shedding in the lateral eye of Limulus polyphemus.
    Sacunas RB; Papuga MO; Malone MA; Pearson AC; Marjanovic M; Stroope DG; Weiner WW; Chamberlain SC; Battelle BA
    J Comp Neurol; 2002 Jul; 449(1):26-42. PubMed ID: 12115691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and morphological identification of photosensitive neurons in the opisthosomal ganglia of Limulus polyphemus.
    Mori K; Saito T; Kuramoto T
    Biol Bull; 2004 Dec; 207(3):209-16. PubMed ID: 15616351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian efferent input to Limulus eyes: anatomy, circuitry, and impact.
    Battelle BA
    Microsc Res Tech; 2002 Aug; 58(4):345-55. PubMed ID: 12214301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limulus brain modulates the structure and function of the lateral eyes.
    Barlow RB; Chamberlain SC; Levinson JZ
    Science; 1980 Nov; 210(4473):1037-9. PubMed ID: 7434015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory.
    Horridge A
    J Insect Physiol; 2005 Mar; 51(3):243-66. PubMed ID: 15749108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral sensitivity of the endoparietal eye in Limulus polyphemus.
    Lall AB; Meztroth R
    Vision Res; 1979; 19(9):1055-6. PubMed ID: 532119
    [No Abstract]   [Full Text] [Related]  

  • 17. Osmotic properties of Limulus seawaters and organ cultures: an unrecognized issue.
    Lim-Kessler CC; Bolbecker AR; Li J; Wasserman GS
    Vis Neurosci; 2008; 25(1):103-5. PubMed ID: 18282315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms in the lateral eye of the Japanese horseshoe crab.
    Saito T; Yamamoto T; Powers MK; Barlow RB
    Biol Bull; 1997 Oct; 193(2):200-1. PubMed ID: 9390384
    [No Abstract]   [Full Text] [Related]  

  • 19. Do weak adapting backgrounds uncover multiple components in the electroretinogram of the horseshoe crab?
    Lucas JC; Weiner WW; Ahmed J
    Biomed Sci Instrum; 2003; 39():105-10. PubMed ID: 12724877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroretinographic measures of vision in horseshoe crabs with uniform versus variegated carapaces.
    Wasserman GS; Cheng Z
    Biol Signals; 1996; 5(5):247-62. PubMed ID: 8937689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.