BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8003481)

  • 1. Interaction of spin-labeled apocytochrome c and spin-labeled cytochrome c with negatively charged lipids studied by electron spin resonance.
    Snel MM; de Kruijff B; Marsh D
    Biochemistry; 1994 Jun; 33(23):7146-56. PubMed ID: 8003481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance.
    Snel MM; Marsh D
    Biophys J; 1994 Aug; 67(2):737-45. PubMed ID: 7948687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane location of spin-labeled apocytochrome c and cytochrome c determined by paramagnetic relaxation agents.
    Snel MM; de Kruijff B; Marsh D
    Biochemistry; 1994 Sep; 33(37):11150-7. PubMed ID: 7727366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apocytochrome c binding to negatively charged lipid dispersions studied by spin-label electron spin resonance.
    Görrissen H; Marsh D; Rietveld A; de Kruijff B
    Biochemistry; 1986 May; 25(10):2904-10. PubMed ID: 3013288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the interaction of amino- and carboxy-terminal fragments of the mitochondrial precursor protein apocytochrome c with negatively charged phospholipids. A spin-label electron spin resonance study.
    Jordi W; de Kruijff B; Marsh D
    Biochemistry; 1989 Nov; 28(23):8998-9005. PubMed ID: 2557914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid.
    Rankin SE; Watts A; Pinheiro TJ
    Biochemistry; 1998 Sep; 37(36):12588-95. PubMed ID: 9730831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial presequence inserts differently into membranes containing cardiolipin and phosphatidylglycerol.
    Snel MM; de Kroon AI; Marsh D
    Biochemistry; 1995 Mar; 34(11):3605-13. PubMed ID: 7893657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on the insertion of the mitochondrial precursor protein apocytochrome c into model membranes.
    Rietveld A; Ponjee GA; Schiffers P; Jordi W; van de Coolwijk PJ; Demel RA; Marsh D; de Kruijff B
    Biochim Biophys Acta; 1985 Sep; 818(3):398-409. PubMed ID: 2994729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy.
    Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential interactions of apo- and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria.
    Demel RA; Jordi W; Lambrechts H; van Damme H; Hovius R; de Kruijff B
    J Biol Chem; 1989 Mar; 264(7):3988-97. PubMed ID: 2537300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane location of spin-labeled cytochrome c determined by paramagnetic relaxation agents.
    Kostrzewa A; Páli T; Froncisz W; Marsh D
    Biochemistry; 2000 May; 39(20):6066-74. PubMed ID: 10821679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apocytochrome c interaction with phospholipid membranes studied by Fourier-transform infrared spectroscopy.
    Muga A; Mantsch HH; Surewicz WK
    Biochemistry; 1991 Mar; 30(10):2629-35. PubMed ID: 1848092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A 2H and 31P NMR study.
    Jordi W; de Kroon AI; Killian JA; de Kruijff B
    Biochemistry; 1990 Mar; 29(9):2312-21. PubMed ID: 2159798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate.
    de Jongh HH; Killian JA; de Kruijff B
    Biochemistry; 1992 Feb; 31(6):1636-43. PubMed ID: 1310614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of enzymatic methylation of apocytochrome c on holocytochrome c formation and proteolysis.
    Frost B; Park KS; Kim S; Paik WK
    Int J Biochem; 1989; 21(12):1407-14. PubMed ID: 2558925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent binding of heme induces a compact apocytochrome c structure.
    Dumont ME; Corin AF; Campbell GA
    Biochemistry; 1994 Jun; 33(23):7368-78. PubMed ID: 8003502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of lipid-associated states of apocytochrome c.
    Bryson EA; Rankin SE; Goormaghtigh E; Ruysschaert JM; Watts A; Pinheiro TJ
    Eur J Biochem; 2000 Mar; 267(5):1390-6. PubMed ID: 10691976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential association of apocytochrome c with negatively charged phospholipids in mixed model membranes.
    Rietveld A; Berkhout TA; Roenhorst A; Marsh D; de Kruijff B
    Biochim Biophys Acta; 1986 Jun; 858(1):38-46. PubMed ID: 3011094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.