These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8003530)
21. Sodium channel fragments: contributions to voltage sensitivity and ion selectivity. Duclohier H; Helluin O; Cosette P; Bendahhou S Biosci Rep; 1998 Dec; 18(6):279-86. PubMed ID: 10357171 [TBL] [Abstract][Full Text] [Related]
22. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Sheets MF; Kyle JW; Kallen RG; Hanck DA Biophys J; 1999 Aug; 77(2):747-57. PubMed ID: 10423423 [TBL] [Abstract][Full Text] [Related]
23. Characterization of cardiac Na+/Ca(2+)-exchange by site-directed polyclonal antibodies. Hale CC; Kleiboeker SB; Ochoa VB Biochim Biophys Acta; 1992 Dec; 1160(3):293-300. PubMed ID: 1477102 [TBL] [Abstract][Full Text] [Related]
24. A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation. Bouhours M; Luce S; Sternberg D; Willer JC; Fontaine B; Tabti N J Physiol; 2005 Jun; 565(Pt 2):415-27. PubMed ID: 15790667 [TBL] [Abstract][Full Text] [Related]
25. Molecular pore structure of voltage-gated sodium and calcium channels. Heinemann SH; Schlief T; Mori Y; Imoto K Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000 [TBL] [Abstract][Full Text] [Related]
26. Phosphorylation of S1505 in the cardiac Na+ channel inactivation gate is required for modulation by protein kinase C. Qu Y; Rogers JC; Tanada TN; Catterall WA; Scheuer T J Gen Physiol; 1996 Nov; 108(5):375-9. PubMed ID: 8923263 [TBL] [Abstract][Full Text] [Related]
27. Probing sodium channel cytoplasmic domain structure. Evidence for the interaction of the rSkM1 amino and carboxyl termini. Sun W; Barchi RL; Cohen SA J Biol Chem; 1995 Sep; 270(38):22271-6. PubMed ID: 7673207 [TBL] [Abstract][Full Text] [Related]
28. Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Tikhonov DB; Zhorov BS Biophys J; 2007 Sep; 93(5):1557-70. PubMed ID: 17496040 [TBL] [Abstract][Full Text] [Related]
29. Identification of peptide components of the brevetoxin receptor site of rat brain sodium channels. Trainer VL; Baden DG; Catterall WA J Biol Chem; 1994 Aug; 269(31):19904-9. PubMed ID: 8051073 [TBL] [Abstract][Full Text] [Related]
30. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. West JW; Patton DE; Scheuer T; Wang Y; Goldin AL; Catterall WA Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10910-4. PubMed ID: 1332060 [TBL] [Abstract][Full Text] [Related]
31. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Lipkind GM; Fozzard HA Biophys J; 1994 Jan; 66(1):1-13. PubMed ID: 8130328 [TBL] [Abstract][Full Text] [Related]
32. Depolarization exposes the voltage sensor of the sodium channels to the extracellular region. Sammar M; Spira G; Meiri H J Membr Biol; 1992 Jan; 125(1):1-11. PubMed ID: 1311766 [TBL] [Abstract][Full Text] [Related]
33. [New aspects of the molecular effect of anti-arrhythmia agents]. Honerjäger P Herz; 1990 Apr; 15(2):70-8. PubMed ID: 2160907 [TBL] [Abstract][Full Text] [Related]
34. Helix-stabilizing effects of the pentapeptide KIFMK and its related peptides on the sodium channel inactivation gate peptides. Maeda Y; Nakagawa T; Kuroda Y J Pept Res; 2001 Nov; 58(5):413-23. PubMed ID: 11892850 [TBL] [Abstract][Full Text] [Related]
35. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel. Fraceto LF; Oyama S; Nakaie CR; Spisni A; de Paula E; Pertinhez TA Biophys Chem; 2006 Aug; 123(1):29-39. PubMed ID: 16687202 [TBL] [Abstract][Full Text] [Related]
36. Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability. Lee S; Iwata T; Oyagi H; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G Biochim Biophys Acta; 1993 Sep; 1151(1):76-82. PubMed ID: 7689337 [TBL] [Abstract][Full Text] [Related]
37. Suppression of insulin signalling by a synthetic peptide KIFMK suggests the cytoplasmic linker between DIII-S6 and DIV-S1 as a local anaesthetic binding site on the sodium channel. Hirose M; Kuroda Y; Sawa S; Nakagawa T; Hirata M; Sakaguchi M; Tanaka Y Br J Pharmacol; 2004 May; 142(1):222-8. PubMed ID: 15037518 [TBL] [Abstract][Full Text] [Related]
38. Voltage sensitivity and conformational change of isolated S4L45 fragments from sodium channels are tuned to proline. Helluin O; Bendahhou S; Duclohier H Eur Biophys J; 1998; 27(6):595-604. PubMed ID: 9791942 [TBL] [Abstract][Full Text] [Related]
39. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis. Yamagishi T; Janecki M; Marban E; Tomaselli GF Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784 [TBL] [Abstract][Full Text] [Related]
40. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Catterall WA Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]