BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8003622)

  • 1. Relaxed-residue conformational mapping of the three linkage bonds of isomaltose and gentiobiose with MM3 (92).
    Dowd MK; Reilly PJ; French AD
    Biopolymers; 1994 May; 34(5):625-38. PubMed ID: 8003622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies.
    Javaroni F; Ferreira AB; da Silva CO
    Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of alpha2 --> 8-linked disialoside: conformational analysis and implications for binding to proteins.
    Vasudevan SV; Balaji PV
    Biopolymers; 2002 Mar; 63(3):168-80. PubMed ID: 11787005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis.
    Frandsen TP; Stoffer BB; Palcic MM; Hof S; Svensson B
    J Mol Biol; 1996 Oct; 263(1):79-89. PubMed ID: 8890914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps.
    Schnupf U; Willett JL; Bosma WB; Momany FA
    Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis and molecular dynamics simulation of alpha-(1-->2) and alpha-(1-->3) linked rhamnose oligosaccharides: reconciliation with optical rotation and NMR experiments.
    Hardy BJ; Bystricky S; Kovac P; Widmalm G
    Biopolymers; 1997 Jan; 41(1):83-96. PubMed ID: 8986121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of the anomeric forms of kojibiose, nigerose, and maltose using MM3.
    Dowd MK; Zeng J; French AD; Reilly PJ
    Carbohydr Res; 1992 Jun; 230(2):223-44. PubMed ID: 1394298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and conformational analysis of novel N(OCH3)-linked disaccharide analogues.
    Peri F; Jiménez-Barbero J; García-Aparicio V; Tvaroska I; Nicotra F
    Chemistry; 2004 Mar; 10(6):1433-44. PubMed ID: 15034887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes due to vicinal glycosylation: the branched alpha-L-Rhap(1-2)[beta-D-Galp(1-3)]-beta-D-Glc1-OMe trisaccharide compared with its parent disaccharides.
    Kozár T; Nifant'ev NE; Grosskurth H; Dabrowski U; Dabrowski J
    Biopolymers; 1998 Nov; 46(6):417-32. PubMed ID: 9798429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII.
    Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T
    Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational free energy maps for globobiose (alpha-D-Galp-(1-->4)-beta-D-Galp) in implicit and explicit aqueous solution.
    Kuttel MM
    Carbohydr Res; 2008 May; 343(6):1091-8. PubMed ID: 18291354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomeric configuration, glycosidic linkage, and the solution conformational entropy of O-linked disaccharides.
    Striegel AM
    J Am Chem Soc; 2003 Apr; 125(14):4146-8. PubMed ID: 12670236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sp2-Iminosugar O-, S-, and N-glycosides as conformational mimics of α-linked disaccharides; implications for glycosidase inhibition.
    Sánchez-Fernández EM; Rísquez-Cuadro R; Ortiz Mellet C; García Fernández JM; Nieto PM; Angulo J
    Chemistry; 2012 Jul; 18(27):8527-39. PubMed ID: 22674827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of disaccharides by empirical force field calculations. Part V: Conformational maps of beta-gentiobiose in an optimized consistent force field.
    Engelsen SB; Rasmussen K
    Int J Biol Macromol; 1993 Feb; 15(1):56-62. PubMed ID: 8443134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxymethyl rotamer populations in disaccharides.
    Roën A; Padrón JI; Vázquez JT
    J Org Chem; 2003 Jun; 68(12):4615-30. PubMed ID: 12790564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conformational study of the xyloglucan oligomer, XXXG, by NMR spectroscopy and molecular modeling.
    Picard C; Gruza J; Derouet C; Renard CM; Mazeau K; Koca J; Imberty A; Hervé Du Penhoat C
    Biopolymers; 2000 Jul; 54(1):11-26. PubMed ID: 10799977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B3LYP/6-311++G* * study of structure and spin-spin coupling constant in heparin disaccharide.
    Hricovíni M; Scholtzová E; Bízik F
    Carbohydr Res; 2007 Jul; 342(10):1350-6. PubMed ID: 17445784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational circular dichroism (VCD) studies on disaccharides in the CH region: toward discrimination of the glycosidic linkage position.
    Taniguchi T; Monde K
    Org Biomol Chem; 2007 Apr; 5(7):1104-10. PubMed ID: 17377664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MM3 potential energy surfaces of alpha-3-linked L-fucobiose and fucotriose and their sulfated counterparts.
    Stortz CA
    Carbohydr Res; 2004 Oct; 339(14):2381-90. PubMed ID: 15388353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.