BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 8003752)

  • 1. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats.
    Woderer S; Henninger N; Garthe CD; Kloetzer HM; Hajnsek M; Kamecke U; Gretz N; Kraenzlin B; Pill J
    Anal Chim Acta; 2007 Jan; 581(1):7-12. PubMed ID: 17386418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
    Updike SJ; Shults MC; Gilligan BJ; Rhodes RK
    Diabetes Care; 2000 Feb; 23(2):208-14. PubMed ID: 10868833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GOD-H2O2-electrode as an approach to implantable glucose sensors.
    Abel P; Fischer U; Brunstein E; Ertle R
    Horm Metab Res Suppl; 1988; 20():26-9. PubMed ID: 3248787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane.
    Yu B; Long N; Moussy Y; Moussy F
    Biosens Bioelectron; 2006 Jun; 21(12):2275-82. PubMed ID: 16330201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors.
    Shults MC; Rhodes RK; Updike SJ; Gilligan BJ; Reining WN
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):937-42. PubMed ID: 7959800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ calibration of implanted electrochemical glucose sensors.
    von Woedtke T; Rebrin K; Fischer U; Abel P; Wilke W; Vogt L; Albrecht G
    Biomed Biochim Acta; 1989; 48(11-12):943-52. PubMed ID: 2636839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potentially implantable enzyme electrode for amperometric measurement of glucose.
    Kerner W; Zier H; Steinbach G; Brückel J; Pfeiffer EF; Weiss T; Cammann K; Planck H
    Horm Metab Res Suppl; 1988; 20():8-13. PubMed ID: 3248792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue.
    Thomé-Duret V; Gangnerau MN; Zhang Y; Wilson GS; Reach G
    Diabetes Metab; 1996 Jun; 22(3):174-8. PubMed ID: 8697304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans.
    Gilligan BC; Shults M; Rhodes RK; Jacobs PG; Brauker JH; Pintar TJ; Updike SJ
    Diabetes Technol Ther; 2004 Jun; 6(3):378-86. PubMed ID: 15198842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glucose sensor: the missing link in diabetes therapy.
    Pfeiffer EF
    Horm Metab Res Suppl; 1990; 24():154-64. PubMed ID: 2272621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing glucose sensors for in vivo use.
    Pickup J
    Trends Biotechnol; 1993 Jul; 11(7):285-91. PubMed ID: 7763951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for calibrating a subcutaneous glucose sensor.
    Velho G; Froguel P; Thevenot DR; Reach G
    Biomed Biochim Acta; 1989; 48(11-12):957-64. PubMed ID: 2700068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats.
    Koudelka M; Rohner-Jeanrenaud F; Terrettaz J; Bobbioni-Harsch E; de Rooij NF; Jeanrenaud B
    Biomed Biochim Acta; 1989; 48(11-12):953-6. PubMed ID: 2636840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous glucose monitoring: an overview of today's technologies and their clinical applications.
    Heinemann L; Koschinsky T
    Int J Clin Pract Suppl; 2002 Jul; (129):75-9. PubMed ID: 12166611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model.
    Gilligan BJ; Shults MC; Rhodes RK; Updike SJ
    Diabetes Care; 1994 Aug; 17(8):882-7. PubMed ID: 7956636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediation of in vivo glucose sensor inflammatory response via nitric oxide release.
    Gifford R; Batchelor MM; Lee Y; Gokulrangan G; Meyerhoff ME; Wilson GS
    J Biomed Mater Res A; 2005 Dec; 75(4):755-66. PubMed ID: 16138325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein interactions with subcutaneously implanted biosensors.
    Gifford R; Kehoe JJ; Barnes SL; Kornilayev BA; Alterman MA; Wilson GS
    Biomaterials; 2006 Apr; 27(12):2587-98. PubMed ID: 16364432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.