These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8003757)

  • 1. Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis.
    Deng X; Marois Y; King MW; Guidoin R
    ASAIO J; 1994; 40(2):186-91. PubMed ID: 8003757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical modelling of the release rate of low-density lipoproteins and their breakdown products at arterial stenoses.
    Deng X; Stroman PW; Guidoin R
    Clin Invest Med; 1996 Apr; 19(2):83-91. PubMed ID: 8697674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of atherosclerosis in arterial junctions. Modeling the release rate of low density lipoprotein and its breakdown products accumulated in blood vessel walls.
    Deng X; King M; Guidoin R
    ASAIO J; 1993; 39(3):M489-95. PubMed ID: 8268585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a disturbed flow on adhesion of monocytes to a model of an arterial wall.
    Fan L; Sakai J; Bessho S; Wada S; Karino T
    Biorheology; 2010; 47(1):15-29. PubMed ID: 20448295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a cultured endothelial cell monolayer.
    Naiki T; Sugiyama H; Tashiro R; Karino T
    Biorheology; 1999; 36(3):225-41. PubMed ID: 10690270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of flow-dependent concentration polarization of macromolecules at the surface of a cultured endothelial cell monolayer by means of fluorescence microscopy.
    Naiki T; Karino T
    Biorheology; 2000; 37(5-6):371-84. PubMed ID: 11204543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery.
    Wada S; Karino T
    Biorheology; 1999; 36(3):207-23. PubMed ID: 10690269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta].
    Wu Y; Deng X; Zhen X; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):225-9. PubMed ID: 15884523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane.
    Naiki T; Karino T
    Biorheology; 1999; 36(3):243-56. PubMed ID: 10690271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a disturbed flow on proliferation of the cells of a hybrid vascular graft.
    Fan L; Karino T
    Biorheology; 2010; 47(1):31-8. PubMed ID: 20448296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of atherosclerosis in arterial junctions. Concentration distribution of low density lipoproteins at the luminal surface in regions of disturbed flow.
    Deng X; King MW; Guidoin R
    ASAIO J; 1995; 41(1):58-67. PubMed ID: 7727823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis.
    Chiu JJ; Usami S; Chien S
    Ann Med; 2009; 41(1):19-28. PubMed ID: 18608132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of the role of wall shear in atherosclerosis.
    Caro CG
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):158-61. PubMed ID: 19038849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contemporary views on the etiology and pathogenesis of atherosclerosis].
    Draganov V; Balutsov M; Lazarov S
    Vutr Boles; 2000; 32(4):25-32. PubMed ID: 11688327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.