BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8003830)

  • 1. Axes of motion of thoracolumbar burst fractures.
    Oxland TR; Panjabi MM; Lin RM
    J Spinal Disord; 1994 Apr; 7(2):130-8. PubMed ID: 8003830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility.
    Panjabi MM; Oxland TR; Lin RM; McGowen TW
    Spine (Phila Pa 1976); 1994 Mar; 19(5):578-85. PubMed ID: 8184353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of residual stability in thoracolumbar spine fractures using neutral zone measurements.
    Ching RP; Tencer AF; Anderson PA; Daly CH
    J Orthop Res; 1995 Jul; 13(4):533-41. PubMed ID: 7674069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture pattern and instability of thoracolumbar injuries.
    Kifune M; Panjabi MM; Arand M; Liu W
    Eur Spine J; 1995; 4(2):98-103. PubMed ID: 7600158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of 2-column thoracolumbar fractures with orthoses: a cadaver model.
    Rubery PT; Brown R; Prasarn M; Small J; Conrad B; Horodyski M; Rechtine G
    Spine (Phila Pa 1976); 2013 Mar; 38(5):E270-5. PubMed ID: 23211532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis.
    Liao JC; Chen WP; Wang H
    BMC Musculoskelet Disord; 2017 Jun; 18(1):262. PubMed ID: 28619021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant roentgenographic parameters for evaluating the flexibility of acute thoracolumbar burst fractures. An in vitro study.
    Lin RM; Panjabi MM; Oxland TR
    Int Orthop; 1997; 21(2):109-14. PubMed ID: 9195265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
    Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ
    Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instability of the lumbar burst fracture and limitations of transpedicular instrumentation.
    Slosar PJ; Patwardhan AG; Lorenz M; Havey R; Sartori M
    Spine (Phila Pa 1976); 1995 Jul; 20(13):1452-61. PubMed ID: 8623064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation.
    Panjabi MM; Oxland TR; Kifune M; Arand M; Wen L; Chen A
    Spine (Phila Pa 1976); 1995 May; 20(10):1122-7. PubMed ID: 7638654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does pedicle screw fixation of the subaxial cervical spine provide adequate stabilization in a multilevel vertebral body fracture model? An in vitro biomechanical study.
    Duff J; Hussain MM; Klocke N; Harris JA; Yandamuri SS; Bobinski L; Daniel RT; Bucklen BS
    Clin Biomech (Bristol, Avon); 2018 Mar; 53():72-78. PubMed ID: 29455101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidirectional instabilities of experimental burst fractures of the atlas.
    Oda T; Panjabi MM; Crisco JJ; Oxland TR
    Spine (Phila Pa 1976); 1992 Nov; 17(11):1285-90. PubMed ID: 1462202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study.
    Niosi CA; Zhu QA; Wilson DC; Keynan O; Wilson DR; Oxland TR
    Eur Spine J; 2006 Jun; 15(6):913-22. PubMed ID: 16217663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures.
    McDonnell M; Shah KN; Paller DJ; Thakur NA; Koruprolu S; Palumbo MA; Daniels AH
    Orthopedics; 2016 May; 39(3):e514-8. PubMed ID: 27135451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of the stability of thoracolumbar burst fractures.
    James KS; Wenger KH; Schlegel JD; Dunn HK
    Spine (Phila Pa 1976); 1994 Aug; 19(15):1731-40. PubMed ID: 7973968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model.
    Cain JE; DeJong JT; Dinenberg AS; Stefko RM; Platenburg RC; Lauerman WC
    Spine (Phila Pa 1976); 1993 Sep; 18(12):1647-54. PubMed ID: 8235845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems.
    Shono Y; McAfee PC; Cunningham BW
    Spine (Phila Pa 1976); 1994 Aug; 19(15):1711-22. PubMed ID: 7973965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.